RUS  ENG
Full version
PEOPLE

Kovenya Viktor Mikhailovich

Publications in Math-Net.Ru

  1. The splitting algorithm in finite volume method for numericai solving of Navier–Stokes equations of viscous incompressible fluids

    J. Sib. Fed. Univ. Math. Phys., 14:4 (2021),  519–527
  2. Splitting algorithms for numerical solution of Navier–Stokes equations in fluid dynamics problems

    Prikl. Mekh. Tekh. Fiz., 62:3 (2021),  48–59
  3. Application of splitting algorithms in the method of finite volumes for numerical solution of the Navier–Stokes equations

    Sib. Zh. Ind. Mat., 21:3 (2018),  60–73
  4. Simulation of supersonic flows on the basis of splitting algorithms

    Prikl. Mekh. Tekh. Fiz., 58:5 (2017),  51–59
  5. A factorization method for numerical solution of the Navier–Stokes equations of a incompressible viscous fluid

    Sib. Zh. Ind. Mat., 19:2 (2016),  61–73
  6. Predictor-corrector method for numerical solution of Euler and Navier–Stokes equations

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:2 (2015),  22–37
  7. Parallelization of Splitting Algorithm on the Multiprocessor Systems in Simulation of Viscous Incompressible Liquid Flow

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:4 (2013),  3–15
  8. Effect of micro-blowing of a gas from the surface of a flat plate on its drag

    Prikl. Mekh. Tekh. Fiz., 53:4 (2012),  26–37
  9. A Finite Difference Predictor-Corrector Scheme for Numerical Solution of Navier–Stokes Equations for Compressible Heat-Conducted Gas

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:4 (2011),  32–48
  10. Modeling of supersonic flows near flying vehicle elements

    Prikl. Mekh. Tekh. Fiz., 50:2 (2009),  98–108
  11. Splitting algorithms as applied to the Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 49:4 (2009),  700–714
  12. Numerical simulation of plasma motion in a magnetic field. Two-dimensional case

    Prikl. Mekh. Tekh. Fiz., 48:3 (2007),  121–132
  13. Numerical simulation of plasma dynamics in a nonuniform magnetic field

    Prikl. Mekh. Tekh. Fiz., 47:1 (2006),  35–45
  14. Algorithms of optimal splitting in computational fluids dynamics

    Mat. Model., 16:6 (2004),  23–27
  15. Problems and trends in mathematical modeling

    Prikl. Mekh. Tekh. Fiz., 43:3 (2002),  3–14
  16. Simulation of the motion and heating of an irregular plasma

    Prikl. Mekh. Tekh. Fiz., 42:6 (2001),  3–18
  17. Splitting schemes in the finite volumes method

    Zh. Vychisl. Mat. Mat. Fiz., 41:1 (2001),  100–113
  18. Splitting methods for the numerical solution of multi-dimensional problems of gas dynamics

    Sib. Zh. Vychisl. Mat., 3:3 (2000),  271–280
  19. Numerical modeling of a separated turbulent flow in the near wake behind a plate

    Prikl. Mekh. Tekh. Fiz., 37:1 (1996),  106–113
  20. Acceleration of the convergence of the method of global iterations for the solution of simplified Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 36:7 (1996),  150–160
  21. Modifications of the splitting method for constructing economical difference schemes

    Zh. Vychisl. Mat. Mat. Fiz., 34:6 (1994),  886–897
  22. Numerical modeling of viscous separated flow in the near wake

    Prikl. Mekh. Tekh. Fiz., 30:5 (1989),  53–59
  23. The predictor–corrector method for solving problems of gas dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 28:12 (1988),  1874–1883
  24. The marching method for solving simplified stationary Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 23:5 (1983),  1186–1198
  25. Implicit difference scheme for a numerical solution of three-dimensional equations of gas dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 20:6 (1980),  1465–1482
  26. Application of the splitting method to construct economical difference schemes

    Zh. Vychisl. Mat. Mat. Fiz., 20:3 (1980),  702–715
  27. A numerical method of solving the gas dynamical Navier–Stokes equations

    Dokl. Akad. Nauk SSSR, 247:1 (1979),  29–33
  28. Simplified equations to describe viscous gas flow

    Dokl. Akad. Nauk SSSR, 245:6 (1979),  1322–1324
  29. A moving-grids difference scheme for solving the equations of a viscous gas

    Zh. Vychisl. Mat. Mat. Fiz., 19:1 (1979),  174–188
  30. A difference scheme for the solution of the multidimensional equations of gas dynamics

    Dokl. Akad. Nauk SSSR, 232:6 (1977),  1273–1276

  31. Nikolaǐ Nikolaevich Yanenko

    Differ. Uravn., 21:1 (1985),  173–177


© Steklov Math. Inst. of RAS, 2026