RUS  ENG
Full version
PEOPLE

Yukhno Ludmila Fillipovna

Publications in Math-Net.Ru

  1. Some properties of the difference method for a nonlinear parabolic equation

    Keldysh Institute preprints, 2025, 056, 21 pp.
  2. Finding root spaces for a linear algebraic spectral problem

    Zh. Vychisl. Mat. Mat. Fiz., 61:4 (2021),  531–538
  3. The dynamics of the dissemination of information in society during hype

    Mat. Model., 32:12 (2020),  129–140
  4. The elimination problem in the least square method for a system of linear algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 59:10 (2019),  1641–1647
  5. The least square method for systems of linear ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 59:6 (2019),  972–983
  6. Solving the overdetermined problems for systems of linear ordinary differential equations

    Keldysh Institute preprints, 2018, 281, 19 pp.
  7. Perturbation formulas for a nonlinear eigenvalue problem for ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 58:6 (2018),  890–894
  8. Solving some problems for systems of linear ordinary differential equations with redundant conditions

    Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017),  1285–1293
  9. A nonlinear singular eigenvalue problem for a linear system of ordinary differential equations with redundant conditions

    Zh. Vychisl. Mat. Mat. Fiz., 56:7 (2016),  1294–1298
  10. Principal vectors of a nonlinear finite-dimensional eigenvalue problem

    Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016),  187–192
  11. A numerical method for solving systems of nonlinear equations

    Zh. Vychisl. Mat. Mat. Fiz., 55:11 (2015),  1827–1834
  12. A nonlinear singular eigenvalue problem for a Hamiltonian system of differential equations with redundant condition

    Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015),  599–609
  13. Solving a singular nonlocal problem with redundant conditions for a system of linear ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015),  385–392
  14. A solution method for a nonlocal problem for a system of linear differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 54:11 (2014),  1752–1755
  15. Solving a system of linear ordinary differential equations with redundant conditions

    Zh. Vychisl. Mat. Mat. Fiz., 54:4 (2014),  585–590
  16. A method for the numerical solution of the Painlevé equations

    Zh. Vychisl. Mat. Mat. Fiz., 53:5 (2013),  702–726
  17. Numerical solution of the Painlevé VI equation

    Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013),  249–262
  18. Numerical solution of the Painlevé V equation

    Zh. Vychisl. Mat. Mat. Fiz., 53:1 (2013),  58–71
  19. Numerical solution of the Painlevé IV equation

    Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012),  2023–2032
  20. Numerical solution of the Cauchy problem for the Painlevé; I and II equations

    Zh. Vychisl. Mat. Mat. Fiz., 52:3 (2012),  379–387
  21. Nonlinear eigenvalue problem for a system of ordinary differential equations subject to a nonlocal condition

    Zh. Vychisl. Mat. Mat. Fiz., 52:2 (2012),  231–236
  22. The quantitative conditionality criterium for the systems of linear algebraic equations

    Mat. Model., 23:2 (2011),  3–26
  23. An efficient method for solving difference systems for elliptic differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 51:12 (2011),  2247–2252
  24. A nonlocal problem for singular linear systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011),  1228–1235
  25. A modification of minimal iteration methods for solving systems of linear algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010),  595–611
  26. On a singular nonlinear self-adjoint spectral problem for differential-algebraic systems of equations

    Zh. Vychisl. Mat. Mat. Fiz., 50:2 (2010),  249–254
  27. On the general nonlinear selfadjoint spectral problem for systems of ordinary differential equations with singularities

    Zh. Vychisl. Mat. Mat. Fiz., 50:1 (2010),  38–43
  28. Economic difference scheme for a parabolic equation with a mixed spatial derivative

    Zh. Vychisl. Mat. Mat. Fiz., 49:9 (2009),  1622–1628
  29. General nonlinear self-adjoint eigenvalue problem for systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 49:4 (2009),  624–627
  30. On the index of the boundary value problem for a homogeneous Hamiltonian system of differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 49:3 (2009),  490–497
  31. A stopping criterion for the iterative solution of an overdetermined system of linear algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008),  2083–2091
  32. On the self-adjoint nonlinear eigenvalue problem for Hamiltonian systems of ordinary differential equations with singularities

    Zh. Vychisl. Mat. Mat. Fiz., 48:7 (2008),  1202–1208
  33. Nonlinear eigenvalue problem for second-order Hamiltonian systems

    Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008),  999–1002
  34. On modification of certain methods of the conjugate direction type for solving rectangular systems of linear algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 47:12 (2007),  1979–1987
  35. On modification of certain methods of the conjugate direction type for solving systems of linear algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 47:11 (2007),  1811–1818
  36. A method for solving nonlinear spectral problems for a class of systems of differential algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007),  829–834
  37. On certain properties of a nonlinear eigenvalue problem for Hamiltonian systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007),  638–645
  38. A method for solving boundary value problems and spectral problems for linear differential-algebraic systems

    Differ. Uravn., 42:7 (2006),  874–882
  39. A modification of conjugate direction methods

    Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006),  7–11
  40. On a method for solving the nonlinear eigenvalue problem for a differential algebraic system of equations

    Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005),  1575–1579
  41. On a method for solving boundary value problems for linear differential algebraic system of equations

    Zh. Vychisl. Mat. Mat. Fiz., 45:7 (2005),  1192–1195
  42. How to Single out Solutions Bounded at a Singular Point for Some Differential-Algebraic Systems

    Differ. Uravn., 40:7 (2004),  893–897
  43. On a solving ill-conditioned linear systems by iterative methods

    Mat. Model., 16:7 (2004),  13–20
  44. On the implementation of an elimination method in linear problems with inexactly specified initial data

    Zh. Vychisl. Mat. Mat. Fiz., 44:4 (2004),  640–649
  45. A method for solving a nonlinear nonself-adjoint spectral problem for some systems of linear ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 44:1 (2004),  104–110
  46. A Nonlinear Self-Adjoint Spectral Problem for Differential-Algebraic Equations

    Differ. Uravn., 39:7 (2003),  867–878
  47. On a nonlinear self-adjoint eigenvalue problem for a certain class of differential algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 43:3 (2003),  410–421
  48. Investigation of Some Mathematical Models of Electorate Evolution

    Differ. Uravn., 38:10 (2002),  1322–1330
  49. On the application of Craig's method to the solution of linear equations with inexact initial conditions

    Zh. Vychisl. Mat. Mat. Fiz., 42:12 (2002),  1763–1770
  50. On a nonlinear selfadjoint spectral problem for some differential-algebraic equations of index $1$

    Zh. Vychisl. Mat. Mat. Fiz., 42:7 (2002),  996–1012
  51. A simplest model of relaxation to equilibrium between two power branches

    Mat. Model., 13:1 (2001),  65–76
  52. Modifying certain elimination methods

    Zh. Vychisl. Mat. Mat. Fiz., 40:7 (2000),  974–979
  53. On the completeness of the set of eigenvectors of a nonlinear selfadjoint eigenvalue problem

    Zh. Vychisl. Mat. Mat. Fiz., 40:4 (2000),  503–504
  54. Harmonic analysis of the quasi-gasdynamic system of equations for viscous gas flows and kinetically consistent finite difference schemes in their linear approximations

    Zh. Vychisl. Mat. Mat. Fiz., 40:2 (2000),  265–273
  55. A method for solving the multiparameter eigenvalue problem for certain systems of differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 40:1 (2000),  21–29
  56. A method for solving a nonlinear selfadjoint spectral problem for a second-order ordinary differential equation with coupled boundary conditions

    Differ. Uravn., 35:2 (1999),  206–211
  57. Nonlinear spectral problem for the Sturm–Liouville equations with coupled boundary conditions depending on a spectral parameter

    Zh. Vychisl. Mat. Mat. Fiz., 39:7 (1999),  1119–1133
  58. Stability boundaries for 2-dimensional difference schemes

    Mat. Model., 10:1 (1998),  44–50
  59. A method for finding the smallest eigenvalue of a nonlinear selfadjoint spectral problem

    Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998),  1095–1105
  60. An elimination method for linear problems

    Zh. Vychisl. Mat. Mat. Fiz., 38:4 (1998),  547–556
  61. The argument principle in a spectral problem for systems of ordinary differential equations with singularities

    Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998),  61–67
  62. Numerical investigation of the stability of two-layer difference schemes for the two-dimensional heat-conduction equation

    Zh. Vychisl. Mat. Mat. Fiz., 36:8 (1996),  118–126
  63. On a spectral property of the product of two rectangular matrices

    Zh. Vychisl. Mat. Mat. Fiz., 36:5 (1996),  6–8
  64. An algorithm for computing the rank and signature of a Hermitian block-tridiagonal matrix

    Zh. Vychisl. Mat. Mat. Fiz., 36:1 (1996),  42–51
  65. Generalization of the Wittrick–Williams method to nonlinear spectral problems with a multiple spectrum

    Differ. Uravn., 31:7 (1995),  1261–1264
  66. On the nonlinear spectral problem in the superelement method

    Differ. Uravn., 30:7 (1994),  1211–1216
  67. Determining the number of eigenvalues of a spectral problem

    Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994),  776–783
  68. On some modifications of Newton's method for solving the nonlinear spectral problem

    Zh. Vychisl. Mat. Mat. Fiz., 33:9 (1993),  1403–1409
  69. A numerical method for solving multidimensional hyperbolic systems

    Zh. Vychisl. Mat. Mat. Fiz., 32:6 (1992),  867–877
  70. On some difference-characteristic schemes for non-one-dimensional non-stationary problems in the theory of elasticity

    Zh. Vychisl. Mat. Mat. Fiz., 30:1 (1990),  135–143
  71. Numerical solution of a nonlinear spectral problem for symmetric matrices

    Zh. Vychisl. Mat. Mat. Fiz., 27:9 (1987),  1320–1326
  72. A method of accelerating iteration processes for the solution of difference equations

    Zh. Vychisl. Mat. Mat. Fiz., 26:3 (1986),  373–380
  73. On the nature of the convergence of the method of nets in the solution of nonlinear evolution problems

    Dokl. Akad. Nauk SSSR, 228:2 (1976),  325–328
  74. The convergence of the Rothe scheme for certain nonlinear evolution equations

    Zh. Vychisl. Mat. Mat. Fiz., 15:5 (1975),  1168–1182
  75. Numerical solution of systems of difference equations in the theory of filtering

    Zh. Vychisl. Mat. Mat. Fiz., 15:4 (1975),  977–984

  76. Correction

    Zh. Vychisl. Mat. Mat. Fiz., 47:1 (2007),  176
  77. Correction: “A method for solving a nonlinear nonself-adjoint spectral problem for some systems of linear ordinary differential equations”

    Zh. Vychisl. Mat. Mat. Fiz., 44:11 (2004),  2112


© Steklov Math. Inst. of RAS, 2026