RUS  ENG
Full version
PEOPLE

Antonova Tat'yana Vladimirovna

Publications in Math-Net.Ru

  1. Regular algorithms for the localization of discontinuity lines based on a separation of perturbed function values

    Sib. Zh. Vychisl. Mat., 28:3 (2025),  241–256
  2. Study of separation-based methods for localization of discontinuity lines

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:3 (2025),  5–19
  3. On the localization of fractal discontinuity lines from noisy data

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 9,  27–44
  4. A Study of New Methods for Localizing Discontinuity Lines on Extended Correctness Classes

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023),  10–22
  5. Approximation of the Normal to the Discontinuity Lines of a Noisy Function

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  7–23
  6. Algorithms for localizing discontinuity lines with a new type of averaging

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  5–18
  7. New accuracy estimates for methods for localizing discontinuity lines of a noisy function

    Sib. Zh. Vychisl. Mat., 23:4 (2020),  351–364
  8. Investigation of methods of localization of $q$-jumps and discontinities of firsth king of noisy function

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 7,  3–14
  9. Estimates of characteristics of localization methods for discontinuities of the first kind of a noisy function

    Sib. Zh. Ind. Mat., 22:1 (2019),  3–12
  10. On the localization of nonsmooth discontinuity lines of a function of two variables

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019),  9–23
  11. On the problem of global localization of discontinuity lines for a function of two variables

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  12–23
  12. Localization of boundaries for subsets of discontinuity points of noisy function

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 11,  13–19
  13. A discrete algorithm for the localization of lines of discontinuity of a two-variable function

    Sib. Zh. Ind. Mat., 20:4 (2017),  3–12
  14. High accuracy algorithms for approximation of discontinuity lines of a noisy function

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  10–21
  15. Research of a threshold (correlation) method and application for localization of singularities

    Sib. Èlektron. Mat. Izv., 13 (2016),  829–848
  16. Discretization of a new method for localizing discontinuity lines of a noisy two-variable function

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  8–17
  17. Methods for the approximating the discontinuity lines of a noisy function of two variables with countably many singularities

    Sib. Zh. Ind. Mat., 18:2 (2015),  3–11
  18. Methods of identifying a parameter in the kernel of the first kind equation of the convolution type on the class of functions with discontinuities

    Sib. Zh. Vychisl. Mat., 18:2 (2015),  107–120
  19. On discretization of methods for localization of singularities a noisy function

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  3–13
  20. Approximation of discontinuity lines of a noisy function of two variables

    Sib. Zh. Ind. Mat., 15:1 (2012),  3–13
  21. Localization method for lines of discontinuity of approximately defined function of two variables

    Sib. Zh. Vychisl. Mat., 15:4 (2012),  345–357
  22. On the localization of singularities of the first kind for a function of bounded variation

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  56–68
  23. A method for the localization of singularities of a solution to a convolution-type equation of the first kind with a step kernel

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 7,  3–12
  24. On ill-posed problems of localization of singularities

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  30–45
  25. New methods for localizing discontinuities of a noisy function

    Sib. Zh. Vychisl. Mat., 13:4 (2010),  375–386
  26. Regularizing algorithms for localizing the breakpoints of a noisy function

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:1 (2009),  44–58
  27. Regularizing algorithms for detecting discontinuities in ill-posed problems

    Zh. Vychisl. Mat. Mat. Fiz., 48:8 (2008),  1362–1370
  28. Problem on separation of singularities

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 11,  3–9
  29. A method of separating functionals for extracting of a local atomic structure

    Mat. Model., 16:10 (2004),  81–92
  30. Direct and inverse problems of oblique radiosounding of ionosphere with waveguids

    Mat. Model., 16:3 (2004),  22–32
  31. Algorithms for solving direct and inverse problems of oblique radio-sounding ionosphere

    Mat. Model., 14:11 (2002),  23–32
  32. Solving equations of the first kind on classes of functions with singularities

    Trudy Inst. Mat. i Mekh. UrO RAN, 8:1 (2002),  147–188
  33. Reconstruction of a function with a finite number of discontinuities of the first kind from noisy data

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 7,  65–68
  34. On the solution of integral equations of the first kind nonlinear in parameter in classes of distributions

    Zh. Vychisl. Mat. Mat. Fiz., 40:6 (2000),  819–831
  35. Methods for parametric errors suppression under solution integral equations of the first kind

    Mat. Model., 8:12 (1996),  110–124


© Steklov Math. Inst. of RAS, 2026