RUS  ENG
Full version
PEOPLE

Ageev Aleksandr Leonidovich

Publications in Math-Net.Ru

  1. Regular algorithms for the localization of discontinuity lines based on a separation of perturbed function values

    Sib. Zh. Vychisl. Mat., 28:3 (2025),  241–256
  2. Study of separation-based methods for localization of discontinuity lines

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:3 (2025),  5–19
  3. On the localization of fractal discontinuity lines from noisy data

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 9,  27–44
  4. A Study of New Methods for Localizing Discontinuity Lines on Extended Correctness Classes

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023),  10–22
  5. Approximation of the Normal to the Discontinuity Lines of a Noisy Function

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  7–23
  6. Algorithms for localizing discontinuity lines with a new type of averaging

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  5–18
  7. New accuracy estimates for methods for localizing discontinuity lines of a noisy function

    Sib. Zh. Vychisl. Mat., 23:4 (2020),  351–364
  8. Investigation of methods of localization of $q$-jumps and discontinities of firsth king of noisy function

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 7,  3–14
  9. Estimates of characteristics of localization methods for discontinuities of the first kind of a noisy function

    Sib. Zh. Ind. Mat., 22:1 (2019),  3–12
  10. On the localization of nonsmooth discontinuity lines of a function of two variables

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019),  9–23
  11. On the problem of global localization of discontinuity lines for a function of two variables

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  12–23
  12. Localization of boundaries for subsets of discontinuity points of noisy function

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 11,  13–19
  13. A discrete algorithm for the localization of lines of discontinuity of a two-variable function

    Sib. Zh. Ind. Mat., 20:4 (2017),  3–12
  14. High accuracy algorithms for approximation of discontinuity lines of a noisy function

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  10–21
  15. Research of a threshold (correlation) method and application for localization of singularities

    Sib. Èlektron. Mat. Izv., 13 (2016),  829–848
  16. Discretization of a new method for localizing discontinuity lines of a noisy two-variable function

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  8–17
  17. Methods for the approximating the discontinuity lines of a noisy function of two variables with countably many singularities

    Sib. Zh. Ind. Mat., 18:2 (2015),  3–11
  18. On discretization of methods for localization of singularities a noisy function

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  3–13
  19. Approximation of discontinuity lines of a noisy function of two variables

    Sib. Zh. Ind. Mat., 15:1 (2012),  3–13
  20. On the localization of singularities of the first kind for a function of bounded variation

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  56–68
  21. A method for the localization of singularities of a solution to a convolution-type equation of the first kind with a step kernel

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 7,  3–12
  22. On ill-posed problems of localization of singularities

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  30–45
  23. Regularizing algorithms for detecting discontinuities in ill-posed problems

    Zh. Vychisl. Mat. Mat. Fiz., 48:8 (2008),  1362–1370
  24. Problem on separation of singularities

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 11,  3–9
  25. Regular algorithms for the analysis of radio-location images

    Num. Meth. Prog., 8:3 (2007),  275–285
  26. A method of separating functionals for extracting of a local atomic structure

    Mat. Model., 16:10 (2004),  81–92
  27. Direct and inverse problems of oblique radiosounding of ionosphere with waveguids

    Mat. Model., 16:3 (2004),  22–32
  28. Algorithms for solving direct and inverse problems of oblique radio-sounding ionosphere

    Mat. Model., 14:11 (2002),  23–32
  29. Conditional estimates for stability in a nonsymmetric eigenvalue problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 9,  3–12
  30. Solution of equations of the first kind with a finite-dimensional nonlinearity

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 3,  68–72
  31. Methods for parametric errors suppression under solution integral equations of the first kind

    Mat. Model., 8:12 (1996),  110–124
  32. Regularized spectral analysis and the solution of equations of the first kind

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 11,  3–16
  33. Algorithms for the finite-dimensional approximation of stabilizing corrections

    Zh. Vychisl. Mat. Mat. Fiz., 31:7 (1991),  943–952
  34. The method of quasi-solutions for the problem of determining the eigenfunctions of a linear operator

    Zh. Vychisl. Mat. Mat. Fiz., 27:5 (1987),  643–650
  35. On the question of the construction of an optimal method for solving a linear equation of the first kind

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 3,  67–68
  36. A regular algorithm for finding the basis of the kernel of a linear operator

    Zh. Vychisl. Mat. Mat. Fiz., 23:5 (1983),  1041–1051
  37. Regularization of nonlinear operator equations on the class of discontinuous functions

    Zh. Vychisl. Mat. Mat. Fiz., 20:4 (1980),  819–826

  38. International conference “Algorithmic analysis of unstable problems (AAUP-2011)”

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  329–333
  39. Uniqueness and nonuniqueness of solution of the totality of the first kind equations equivalent with respect to a given accuracy

    Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998),  85–96


© Steklov Math. Inst. of RAS, 2026