RUS  ENG
Full version
PEOPLE

Petushkov Vladimir Alexevich

Publications in Math-Net.Ru

  1. High-velocity nonlinear deformation and collapse of a damaged medium with initial stresses

    Prikl. Mekh. Tekh. Fiz., 64:3 (2023),  174–188
  2. Transient dynamics of 3D inelastic heterogeneous media analysis by the boundary integral equation and the discrete domains methods

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017),  137–159
  3. On the wave dynamics in damaged shells interacting with the volume of the cavitating liquid

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016),  366–386
  4. Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations

    Mat. Model., 27:1 (2015),  113–130
  5. Simulation of nonlinear dynamics of Hamiltonian systems in biomechanics using computed tomography images

    Mat. Model., 26:1 (2014),  109–121
  6. Boundary Integral Equation Method in the Modeling of Nonlinear Deformation and Failure of the 3D Inhomogeneous Media

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014),  96–114
  7. Discrete a non-linear Hamiltonian dynamics models of hyper elastic deformable media

    J. Sib. Fed. Univ. Math. Phys., 6:2 (2013),  237–246
  8. Viscoplastic Flows and Strain Localization in a Damageable Medium under Impact Loading

    J. Sib. Fed. Univ. Math. Phys., 2:3 (2009),  336–351
  9. Numerical simulation of high-speed dynamics of the nonlinear deformation and failure of damaged medium

    Mat. Model., 21:4 (2009),  79–95
  10. Математическое моделирование высокоскоростного нелинейного деформирования и локализации деформаций при разрушении объeмных сред

    Matem. Mod. Kraev. Zadachi, 1 (2009),  197–203
  11. Critical States of a Damaged Non-linearly Deformed Medium During High-speed Collision with an Obstacle

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(18) (2009),  47–60
  12. Local interactions and fracture of deformable continua located into cavitating liquid flow

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 4,  95–106
  13. Impact waves propogation in nonlinear deformable shells of a complex form

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 3,  81–93
  14. Impact dynamics of damaged shells interacting with a two-phase liquid

    Prikl. Mekh. Tekh. Fiz., 47:1 (2006),  139–152
  15. The 3-D bodies nonlinear deformation and damage processes by highvelocity impact collisions

    Mat. Model., 16:11 (2004),  33–46
  16. Local waves processes in fluid caused by the limit transitions of an isolated vapour bead

    Mat. Model., 15:11 (2003),  51–68
  17. Two-phase fluid flows with the vapour bubbles in transient regimes

    Mat. Model., 15:10 (2003),  109–128
  18. High velocity impact dynamic of two-phase gas and liquid media with the phases heat transfer

    Mat. Model., 12:12 (2000),  35–54
  19. The high-velocity impact of damaged elasto-plastic media by a two-phase liquid

    Mat. Model., 12:10 (2000),  95–109
  20. $H$-velocity impact collision of deforming bodies with a two-phase liquid

    Mat. Model., 10:11 (1998),  3–18
  21. Numerical studies of nonlinear wave processes in a liquid and a deformable solid during high-speed impact interaction

    Prikl. Mekh. Tekh. Fiz., 32:2 (1991),  134–143


© Steklov Math. Inst. of RAS, 2026