RUS  ENG
Full version
PEOPLE

Ershov Aleksandr Anatol'evich

Publications in Math-Net.Ru

  1. On the area of the $\varepsilon$-layer of a weakly convex figure

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:2 (2025),  280–293
  2. Convergence of eigenelements of a Steklov-type boundary value problem for the Lame operator in a semi-cylinder with a small cavity

    Zh. Vychisl. Mat. Mat. Fiz., 65:9 (2025),  1505–1517
  3. Concerning one supplement to unification method of N.N. Krasovskii in differential games theory

    Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024),  65–71
  4. On the relation between $\alpha$-sets and weakly convex sets

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024),  276–285
  5. On the construction of solutions to a game problem with a fixed end time

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024),  255–273
  6. Target-point interpolation of a program control in the approach problem

    Zh. Vychisl. Mat. Mat. Fiz., 64:3 (2024),  547–562
  7. Some problems of target approach for nonlinear control system at a fixed time moment

    Izv. IMI UdGU, 62 (2023),  125–155
  8. Bilinear interpolation of program control in approach problem

    Ufimsk. Mat. Zh., 15:3 (2023),  42–54
  9. On eigenelements of a two-dimensional Steklov-type boundary value problem for the Lamé operator

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:1 (2023),  54–65
  10. Arlen Mikhaylovich Il'in. 90 years since the birth

    Chelyab. Fiz.-Mat. Zh., 7:2 (2022),  135–138
  11. On the parametric dependence of the volume of integral funnels and their approximations

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:3 (2022),  447–462
  12. Reachable sets and integral funnels of differential inclusions depending on a parameter

    Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021),  49–53
  13. Two game-theoretic problems of approach

    Mat. Sb., 212:9 (2021),  40–74
  14. Convergence of eigenelements in a Steklov type boundary value problem for the Lame operator

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  37–47
  15. On Estimating the Degree of Nonconvexity of Reachable Sets of Control Systems

    Trudy Mat. Inst. Steklova, 315 (2021),  261–270
  16. Control system depending on a parameter

    Ural Math. J., 7:1 (2021),  120–159
  17. Estimation of the growth of the degree of nonconvexity of reachable sets in terms of $\alpha$-sets

    Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020),  100–106
  18. On properties of intersection of $\alpha$-sets

    Izv. IMI UdGU, 55 (2020),  79–92
  19. On the guaranteed estimates of the area of convex subsets of compacts on a plane

    Mat. Teor. Igr Pril., 12:4 (2020),  112–126
  20. On estimation of mosaic block size and flake anisometry of artifical graphite by magnetoresistance

    Mat. Model., 32:1 (2020),  100–110
  21. Construction of reachable sets of controlled systems with second order of accuracy with respect to time step

    Sib. Zh. Vychisl. Mat., 23:4 (2020),  365–380
  22. On recovering of unknown constant parameter by several test controls

    Ufimsk. Mat. Zh., 12:4 (2020),  101–116
  23. On one addition to evaluation by L. S. Pontryagin of the geometric difference of sets in a plane

    Izv. IMI UdGU, 54 (2019),  63–73
  24. An approach problem for a control system and a compact set in the phase space in the presence of phase constraints

    Mat. Sb., 210:8 (2019),  29–66
  25. An estimate of the Hausdorff distance between a set and its convex hull in Euclidean spaces of small dimension

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:1 (2018),  223–235
  26. Alpha-sets in finite-dimensional Euclidean spaces and their applications in control theory

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:3 (2018),  261–272
  27. On reducing the motion of a controlled system to a Lebesgue set of a Lipschitz function

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:4 (2018),  489–512
  28. Asymptotics of a boundary-value problem solution for the Laplace equation with type changing of the boundary condition on two small sites

    Chelyab. Fiz.-Mat. Zh., 2:3 (2017),  266–281
  29. An approach problem for a control system with an unknown parameter

    Mat. Sb., 208:9 (2017),  56–99
  30. Contact resistance of a square contact

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  105–113
  31. Asymptotics of the velocity potential of an ideal fluid flowing around a thin body

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  77–93
  32. Asymptotics of three-dimensional integrals singularly depending on a small parameter

    Chelyab. Fiz.-Mat. Zh., 1:1 (2016),  35–42
  33. Modeling of the electric current flow in artificial graphite

    Mat. Model., 28:10 (2016),  125–138
  34. Asymptotics of multidimensional integrals with singular dependence on a small parameter

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  84–92
  35. On the solution of control problems with fixed terminal time

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:4 (2016),  543–564
  36. Asimptotics of magnetoresistance

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 5:1 (2016),  5–12
  37. Asymptotics of a solution of the second boundary value problem for the Laplace equation outside a small neighborhood of a segment

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  81–96
  38. On asymptotic formula for electric resistance of conductor with small contacts

    Ufimsk. Mat. Zh., 7:3 (2015),  16–28
  39. The analysis of energy absorption in a blanket for contact electric resistance

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:2 (2015),  14–24
  40. Mixed problem for a harmonic function

    Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013),  1094–1106
  41. On measurement of electrical conductivity

    Zh. Vychisl. Mat. Mat. Fiz., 53:6 (2013),  1004–1007
  42. Asymptotic expansion of the Dirichlet problem with Laplace equation outside a thin disk

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012),  92–107
  43. Problem about a flow of a thin disk

    Vestnik Chelyabinsk. Gos. Univ., 2011, no. 14,  61–78
  44. Asymptotics of the solution of Laplace's equation with mixed boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011),  1064–1080
  45. Solutions asymptotics of a boundary elliptic problem

    Vestnik Chelyabinsk. Gos. Univ., 2010, no. 12,  12–19
  46. Asymptotic behavior of the solution of the Neumann problem with a delta-like boundary function

    Zh. Vychisl. Mat. Mat. Fiz., 50:3 (2010),  479–485
  47. Asymptotic Expansion of the Solution of a Second-Order Equation

    Mat. Zametki, 85:1 (2009),  134–138
  48. Asymptotics of two-dimensional integrals depending singularly on a small parameter

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:3 (2009),  116–126
  49. Asymptotics of two-dimensional integrals depending singularity on a small parameter

    Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11,  5–11
  50. On the asymptotic behavior of the solution of the second order linear differential equation

    Vestnik Chelyabinsk. Gos. Univ., 2008, no. 10,  30–33

  51. К 70-летию профессора Вячеслава Николаевича Павленко

    Chelyab. Fiz.-Mat. Zh., 2:4 (2017),  383–387
  52. Arlen Mikhaylovich Il’in. Towards 85th birthday

    Chelyab. Fiz.-Mat. Zh., 2:1 (2017),  5–9


© Steklov Math. Inst. of RAS, 2026