|
|
Publications in Math-Net.Ru
-
On the area of the $\varepsilon$-layer of a weakly convex figure
Trudy Inst. Mat. i Mekh. UrO RAN, 31:2 (2025), 280–293
-
Convergence of eigenelements of a Steklov-type boundary value problem for the Lame operator in a semi-cylinder with a small cavity
Zh. Vychisl. Mat. Mat. Fiz., 65:9 (2025), 1505–1517
-
Concerning one supplement to unification method of N.N. Krasovskii in differential games theory
Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024), 65–71
-
On the relation between $\alpha$-sets and weakly convex sets
Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024), 276–285
-
On the construction of solutions to a game problem with a fixed end time
Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024), 255–273
-
Target-point interpolation of a program control in the approach problem
Zh. Vychisl. Mat. Mat. Fiz., 64:3 (2024), 547–562
-
Some problems of target approach for nonlinear control system at a fixed time moment
Izv. IMI UdGU, 62 (2023), 125–155
-
Bilinear interpolation of program control in approach problem
Ufimsk. Mat. Zh., 15:3 (2023), 42–54
-
On eigenelements of a two-dimensional Steklov-type boundary value problem for the Lamé operator
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:1 (2023), 54–65
-
Arlen Mikhaylovich Il'in. 90 years since the birth
Chelyab. Fiz.-Mat. Zh., 7:2 (2022), 135–138
-
On the parametric dependence of the volume of integral funnels and their approximations
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:3 (2022), 447–462
-
Reachable sets and integral funnels of differential inclusions depending on a parameter
Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021), 49–53
-
Two game-theoretic problems of approach
Mat. Sb., 212:9 (2021), 40–74
-
Convergence of eigenelements in a Steklov type boundary value problem for the Lame operator
Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021), 37–47
-
On Estimating the Degree of Nonconvexity of Reachable Sets of Control Systems
Trudy Mat. Inst. Steklova, 315 (2021), 261–270
-
Control system depending on a parameter
Ural Math. J., 7:1 (2021), 120–159
-
Estimation of the growth of the degree of nonconvexity of reachable sets in terms of $\alpha$-sets
Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020), 100–106
-
On properties of intersection of $\alpha$-sets
Izv. IMI UdGU, 55 (2020), 79–92
-
On the guaranteed estimates of the area of convex subsets of compacts on a plane
Mat. Teor. Igr Pril., 12:4 (2020), 112–126
-
On estimation of mosaic block size and flake anisometry of artifical graphite by magnetoresistance
Mat. Model., 32:1 (2020), 100–110
-
Construction of reachable sets of controlled systems with second order of
accuracy with respect to time step
Sib. Zh. Vychisl. Mat., 23:4 (2020), 365–380
-
On recovering of unknown constant parameter by several test controls
Ufimsk. Mat. Zh., 12:4 (2020), 101–116
-
On one addition to evaluation by L. S. Pontryagin of the geometric difference of sets in a plane
Izv. IMI UdGU, 54 (2019), 63–73
-
An approach problem for a control system and a compact set in the phase space in the presence of phase constraints
Mat. Sb., 210:8 (2019), 29–66
-
An estimate of the Hausdorff distance between a set and its convex hull in Euclidean spaces of small dimension
Trudy Inst. Mat. i Mekh. UrO RAN, 24:1 (2018), 223–235
-
Alpha-sets in finite-dimensional Euclidean spaces
and their applications in control theory
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:3 (2018), 261–272
-
On reducing the motion of a controlled system to a Lebesgue set of a Lipschitz function
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:4 (2018), 489–512
-
Asymptotics of a boundary-value problem solution for the Laplace equation with type changing of the boundary condition on two small sites
Chelyab. Fiz.-Mat. Zh., 2:3 (2017), 266–281
-
An approach problem for a control system with an unknown parameter
Mat. Sb., 208:9 (2017), 56–99
-
Contact resistance of a square contact
Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017), 105–113
-
Asymptotics of the velocity potential of an ideal fluid flowing around a thin body
Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017), 77–93
-
Asymptotics of three-dimensional integrals singularly depending on a small parameter
Chelyab. Fiz.-Mat. Zh., 1:1 (2016), 35–42
-
Modeling of the electric current flow in artificial graphite
Mat. Model., 28:10 (2016), 125–138
-
Asymptotics of multidimensional integrals with singular dependence on a small parameter
Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 84–92
-
On the solution of control problems with fixed terminal time
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:4 (2016), 543–564
-
Asimptotics of magnetoresistance
Vestn. YuUrGU. Ser. Vych. Matem. Inform., 5:1 (2016), 5–12
-
Asymptotics of a solution of the second boundary value problem for the Laplace equation outside a small neighborhood of a segment
Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 81–96
-
On asymptotic formula for electric resistance of conductor with small contacts
Ufimsk. Mat. Zh., 7:3 (2015), 16–28
-
The analysis of energy absorption in a blanket for contact electric resistance
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:2 (2015), 14–24
-
Mixed problem for a harmonic function
Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013), 1094–1106
-
On measurement of electrical conductivity
Zh. Vychisl. Mat. Mat. Fiz., 53:6 (2013), 1004–1007
-
Asymptotic expansion of the Dirichlet problem with Laplace equation outside a thin disk
Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012), 92–107
-
Problem about a flow of a thin disk
Vestnik Chelyabinsk. Gos. Univ., 2011, no. 14, 61–78
-
Asymptotics of the solution of Laplace's equation with mixed boundary conditions
Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011), 1064–1080
-
Solutions asymptotics of a boundary elliptic problem
Vestnik Chelyabinsk. Gos. Univ., 2010, no. 12, 12–19
-
Asymptotic behavior of the solution of the Neumann problem with a delta-like boundary function
Zh. Vychisl. Mat. Mat. Fiz., 50:3 (2010), 479–485
-
Asymptotic Expansion of the Solution of a Second-Order Equation
Mat. Zametki, 85:1 (2009), 134–138
-
Asymptotics of two-dimensional integrals depending singularly on a small parameter
Trudy Inst. Mat. i Mekh. UrO RAN, 15:3 (2009), 116–126
-
Asymptotics of two-dimensional integrals depending singularity on a small parameter
Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11, 5–11
-
On the asymptotic behavior of the solution of the second order linear differential equation
Vestnik Chelyabinsk. Gos. Univ., 2008, no. 10, 30–33
-
К 70-летию профессора Вячеслава Николаевича Павленко
Chelyab. Fiz.-Mat. Zh., 2:4 (2017), 383–387
-
Arlen Mikhaylovich Il’in. Towards 85th birthday
Chelyab. Fiz.-Mat. Zh., 2:1 (2017), 5–9
© , 2026