RUS  ENG
Full version
PEOPLE

Kagan Abram Meerovich

Publications in Math-Net.Ru

  1. Contribution to the theory of Pitman estimators

    Zap. Nauchn. Sem. POMI, 408 (2012),  245–267
  2. A lemma on stochastic majorization and properties of the Student distribution

    Teor. Veroyatnost. i Primenen., 52:1 (2007),  199–203
  3. On estimation of a location parameter in presence of an ancillary component

    Teor. Veroyatnost. i Primenen., 50:1 (2005),  172–176
  4. The least squares estimate, nonquadratic errors and the Gaussian distribution

    Teor. Veroyatnost. i Primenen., 36:1 (1991),  34–41
  5. Generalized Condition ot the Identity of Distributions of Random Vectors in Connection with the Asymptotic Theory of Linear Forms in Independent Random Values

    Teor. Veroyatnost. i Primenen., 34:2 (1989),  370–375
  6. New Classes of Dependent Random Variables and Generalization of Darmois–Skytovich Theorem to the Case of Several Forms

    Teor. Veroyatnost. i Primenen., 33:2 (1988),  305–314
  7. The analytical precising of the Heyde theorem on linear forms of independent random variables

    Zap. Nauchn. Sem. LOMI, 166 (1988),  54–59
  8. A class of Two-Dimensional Distributions Arising in Connection with Cramer and Darmois–Skitovitch Theorems

    Teor. Veroyatnost. i Primenen., 32:2 (1987),  349–351
  9. Contribution to the analytic theory of linear forms of independent random variables

    Zap. Nauchn. Sem. LOMI, 153 (1986),  37–44
  10. An information property of exponential families

    Teor. Veroyatnost. i Primenen., 30:4 (1985),  783–786
  11. A simple modification of Pitman estimates for a location parameter

    Teor. Veroyatnost. i Primenen., 30:3 (1985),  562–566
  12. Fisher Information Contained in a Finite-Dimensional Linear Space, and a Correctly Posed Version of the Method of Moments

    Probl. Peredachi Inf., 12:2 (1976),  20–42
  13. A note on the problem of reconstructing the type of a distribution

    Teor. Veroyatnost. i Primenen., 21:2 (1976),  398–401
  14. Estimating stability in the problem of reconstructing the additive type of a distribution

    Zap. Nauchn. Sem. LOMI, 61 (1976),  68–74
  15. Some wide-sense analogs of characteristic properties of the normal distribution

    Zap. Nauchn. Sem. LOMI, 61 (1976),  59–67
  16. Hilbert space methods in classical problems of mathematical statistics

    Zap. Nauchn. Sem. LOMI, 53 (1975),  64–100
  17. Asymptotic behaviour of the polynomial Pitman estimators

    Zap. Nauchn. Sem. LOMI, 43 (1974),  30–39
  18. Sample mean as an estimator of the location parameter in case of the Laplacian loss function, in presence of the nuisance scale parameter

    Zap. Nauchn. Sem. LOMI, 43 (1974),  15–29
  19. Bayes formulation of the location parameter estimation problem

    Zap. Nauchn. Sem. LOMI, 29 (1972),  62–73
  20. Families with “self-control”

    Dokl. Akad. Nauk SSSR, 199:4 (1971),  766–769
  21. The sample mean as an estimator of the shift parameter in the presence of certain losses which differ from the quadratic

    Dokl. Akad. Nauk SSSR, 189:1 (1969),  29–30
  22. Admissibility of the estimate of least squares. Unusual property of the normal law

    Mat. Zametki, 6:1 (1969),  81–89
  23. Theory of estimation for families with shift, scale and exponential parameters

    Trudy Mat. Inst. Steklov., 104 (1968),  19–87
  24. Conditions of optimal unbiased estimation of parametric functions for incomplete exponential families with polynomial constraints

    Dokl. Akad. Nauk SSSR, 175:6 (1967),  1216–1218
  25. Partial sufficiency and unbiased estimation of polynomials in the shift parameter

    Dokl. Akad. Nauk SSSR, 174:6 (1967),  1257–1259
  26. On the estimation theory of the scale parameter

    Teor. Veroyatnost. i Primenen., 12:4 (1967),  735–741
  27. Characterization of the normal law by the property of partial sufficiency

    Teor. Veroyatnost. i Primenen., 12:3 (1967),  567–569
  28. Incomplete Exponential Families and Unbiased Minimum Variance Estimates. I

    Teor. Veroyatnost. i Primenen., 12:1 (1967),  39–50
  29. Sample mean as an estimate of the shift parameter

    Dokl. Akad. Nauk SSSR, 169:5 (1966),  1006–1008
  30. The structure of a complete class of unbiased estimates for distribution families of a special form

    Dokl. Akad. Nauk SSSR, 164:2 (1965),  267–269
  31. Questions in the theory of estimation and the testing of hypotheses

    Itogi Nauki. Ser. Teor. Veroyatn. 1963, 1965,  5–48
  32. Remarks on separating partitions

    Trudy Mat. Inst. Steklov., 79 (1965),  26–31
  33. Sufficient systems

    Trudy Mat. Inst. Steklov., 79 (1965),  17–23
  34. New classes of families of distributions allowing similar regions

    Trudy Mat. Inst. Steklov., 79 (1965),  11–16
  35. The Behrens–Fisher problem for the existence of similar regions in an algebra of sufficient statistics

    Dokl. Akad. Nauk SSSR, 155:6 (1964),  1250–1252
  36. Families of distributions and separating partitions

    Dokl. Akad. Nauk SSSR, 153:3 (1963),  522–525
  37. On the theory of Fischer's information quantity

    Dokl. Akad. Nauk SSSR, 151:2 (1963),  277–278
  38. On Robbins's scheme

    Dokl. Akad. Nauk SSSR, 150:4 (1963),  733–735
  39. On a class of measures in a sequence space

    Sibirsk. Mat. Zh., 4:4 (1963),  956–959
  40. On an empirical Bayes approach to the problem of estimation

    Dokl. Akad. Nauk SSSR, 147:5 (1962),  1020–1021

  41. Foreword of the editor

    Zap. Nauchn. Sem. LOMI, 43 (1974),  5
  42. Yu. V. Linnik “Statistical problems with nuisance parameters” (book review)

    Teor. Veroyatnost. i Primenen., 13:1 (1968),  196–197


© Steklov Math. Inst. of RAS, 2026