RUS  ENG
Full version
PEOPLE

Dyakonov Alexander Gennadievich

Publications in Math-Net.Ru

  1. Towards efficient learning of GNN on high-dimensional multi-layered representations of tabular data

    Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023),  118–125
  2. Deep metric learning: loss functions comparison

    Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023),  60–71
  3. A generalized dialogue graph construction and visualization based on a corpus of dialogues

    Prikl. Diskr. Mat., 2023, no. 59,  111–127
  4. Completeness criteria for a linear model of classification algorithms with respect to families of decision rules

    Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020),  67–70
  5. Practical algorithms for algebraic and logical correction in precedent-based recognition problems

    Zh. Vychisl. Mat. Mat. Fiz., 54:12 (2014),  1979–1993
  6. Criteria for the singularity of a pairwise $l_1$-distance matrix and their generalizations

    Izv. RAN. Ser. Mat., 76:3 (2012),  93–110
  7. Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II

    Zh. Vychisl. Mat. Mat. Fiz., 51:3 (2011),  529–544
  8. Theory of equivalence systems for the description of algebraic closures in a generalized model for the computation of estimates

    Zh. Vychisl. Mat. Mat. Fiz., 50:2 (2010),  388–400
  9. Algebra over estimation algorithms: Normalization with respect to the interval

    Zh. Vychisl. Mat. Mat. Fiz., 49:1 (2009),  200–208
  10. Metrics of algebraic closures in pattern recognition problems with two nonoverlapping classes

    Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008),  916–927
  11. Algebra over estimation algorithms: Normalization and division

    Zh. Vychisl. Mat. Mat. Fiz., 47:6 (2007),  1099–1109
  12. An algebra over estimation algorithms: monotone decision rules

    Zh. Vychisl. Mat. Mat. Fiz., 45:10 (2005),  1893–1904
  13. Algebra over estimation algorithms: the minimal degree of correct algorithms

    Zh. Vychisl. Mat. Mat. Fiz., 45:6 (2005),  1134–1145
  14. Codings and their use in the DNF implementation of binary functions

    Zh. Vychisl. Mat. Mat. Fiz., 44:8 (2004),  1511–1520
  15. Construction of disjunctive normal forms by consecutive multiplication

    Zh. Vychisl. Mat. Mat. Fiz., 43:10 (2003),  1589–1600
  16. Construction of disjunctive normal forms in algorithms of pattern recognition

    Zh. Vychisl. Mat. Mat. Fiz., 42:12 (2002),  1899–1907
  17. Test approach to the implementation of Boolean functions with few zeros by disjunctive normal forms

    Zh. Vychisl. Mat. Mat. Fiz., 42:6 (2002),  924–928
  18. Implementation of a class of Boolean functions with a small number of zeros by irredundant disjunctive normal forms

    Zh. Vychisl. Mat. Mat. Fiz., 41:5 (2001),  821–828
  19. On the choice of a system of support sets for an efficient implementation of recognition algorithms of the estimate-computing type

    Zh. Vychisl. Mat. Mat. Fiz., 40:7 (2000),  1104–1118
  20. Efficient formulas for computing estimates for recognition algorithms with arbitrary systems of support sets

    Zh. Vychisl. Mat. Mat. Fiz., 39:11 (1999),  1904–1918


© Steklov Math. Inst. of RAS, 2026