RUS  ENG
Full version
PEOPLE

Kiselev Yurii Nikolaevich

Publications in Math-Net.Ru

  1. Boundary value problem of Pontryagin's maximum principle in a two-sector economy model with an integral utility function

    Zh. Vychisl. Mat. Mat. Fiz., 55:11 (2015),  1812–1826
  2. Construction of analytic solutions of the Cauchy problem for a two-dimensional Hamiltonian system

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  131–141
  3. Approximation of Convex Compact Sets by Ellipsoids. Ellipsoids of Best Approximation

    Trudy Mat. Inst. Steklova, 262 (2008),  103–126
  4. The hyperbolic tangent law in optimal control synthesis for a nonlinear model with discounting

    Differ. Uravn., 42:11 (2006),  1490–1506
  5. Some algorithms of optimal control

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:2 (2006),  3–17
  6. A study of one-dimensional optimization models with infinite horizon

    Differ. Uravn., 40:12 (2004),  1615–1628
  7. Analysis of Trajectories of a Nonlinear System of Differential Equations

    Differ. Uravn., 37:11 (2001),  1443–1452
  8. Extremal description of unknown parameters in the boundary value problem of the maximum principle

    Trudy Inst. Mat. i Mekh. UrO RAN, 6:1 (2000),  72–90
  9. Extremal property of the initial value of the adjoint variable in the minimization problem of the energy functional on trajectories of linear systems with constrained control

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 60 (1998),  107–127
  10. Construction of precise solutions in special type nonlinear time optimal control problem

    Fundam. Prikl. Mat., 3:3 (1997),  847–868
  11. Control systems with an integral invariant

    Differ. Uravn., 32:4 (1996),  477–483
  12. The potential method in a linear time-optimality problem

    Differ. Uravn., 32:1 (1996),  44–51
  13. A nonlinear boundary value problem for Pontryagin's maximum principle in a linear time-optimality problem

    Differ. Uravn., 31:11 (1995),  1843–1850
  14. Methods of solving optimal control problems based on the Pontryagin maximum principle

    Trudy Mat. Inst. Steklov., 211 (1995),  3–31
  15. Numerical algorithms for linear time-optimal controls

    Zh. Vychisl. Mat. Mat. Fiz., 31:12 (1991),  1763–1771
  16. Mathematical modelling of the propagation of intensively radiating shock waves

    Zh. Vychisl. Mat. Mat. Fiz., 31:6 (1991),  901–921
  17. Optimal design in a smooth linear time-optimality problem

    Differ. Uravn., 26:2 (1990),  232–237
  18. Methods for solving a smooth linear time-optimality problem

    Trudy Mat. Inst. Steklov., 185 (1988),  106–115
  19. Linear time-optimality problem and the unit sphere of initial values of a conjugate variable

    Trudy Mat. Inst. Steklov., 167 (1985),  179–182
  20. The problem of geometric programming without forced constraints

    Zh. Vychisl. Mat. Mat. Fiz., 16:1 (1976),  251–256
  21. Some problems of the optimization of large systems

    Zh. Vychisl. Mat. Mat. Fiz., 12:5 (1972),  1145–1158
  22. A linear problem of time-optimality in the case of analytic perturbations of the initial conditions

    Differ. Uravn., 7:12 (1971),  2151–2160
  23. Differentiability of a mapping that describes isochrone surfaces in a linear time optimal problem

    Differ. Uravn., 7:8 (1971),  1385–1392
  24. An asymptotic solution of the problem of time-optimal control systmes which are close to linear ones

    Dokl. Akad. Nauk SSSR, 182:1 (1968),  31–34

  25. О проектировании точки на эллипсоид

    Math. Ed., 2011, no. 1(57),  45–48
  26. Московский государственный университет им. М.В. Ломоносова

    Kvant, 2007, no. 1,  44–52


© Steklov Math. Inst. of RAS, 2026