RUS  ENG
Full version
PEOPLE

Abramov Aleksandr Aleksandrovich

Publications in Math-Net.Ru

  1. The least square method for systems of linear ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 59:6 (2019),  972–983
  2. Solving the overdetermined problems for systems of linear ordinary differential equations

    Keldysh Institute preprints, 2018, 281, 19 pp.
  3. Perturbation formulas for a nonlinear eigenvalue problem for ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 58:6 (2018),  890–894
  4. Solving some problems for systems of linear ordinary differential equations with redundant conditions

    Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017),  1285–1293
  5. A nonlinear singular eigenvalue problem for a linear system of ordinary differential equations with redundant conditions

    Zh. Vychisl. Mat. Mat. Fiz., 56:7 (2016),  1294–1298
  6. Principal vectors of a nonlinear finite-dimensional eigenvalue problem

    Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016),  187–192
  7. A numerical method for solving systems of nonlinear equations

    Zh. Vychisl. Mat. Mat. Fiz., 55:11 (2015),  1827–1834
  8. Calculation of the spheroidal functions of the first kind for complex values of the argument and parameters

    Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015),  798–806
  9. A nonlinear singular eigenvalue problem for a Hamiltonian system of differential equations with redundant condition

    Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015),  599–609
  10. Solving a singular nonlocal problem with redundant conditions for a system of linear ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015),  385–392
  11. A solution method for a nonlocal problem for a system of linear differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 54:11 (2014),  1752–1755
  12. Solving a system of linear ordinary differential equations with redundant conditions

    Zh. Vychisl. Mat. Mat. Fiz., 54:4 (2014),  585–590
  13. A method for the numerical solution of the Painlevé equations

    Zh. Vychisl. Mat. Mat. Fiz., 53:5 (2013),  702–726
  14. Numerical solution of the Painlevé VI equation

    Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013),  249–262
  15. Numerical solution of the Painlevé V equation

    Zh. Vychisl. Mat. Mat. Fiz., 53:1 (2013),  58–71
  16. Numerical solution of the Painlevé IV equation

    Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012),  2023–2032
  17. Numerical solution of the Cauchy problem for the Painlevé; I and II equations

    Zh. Vychisl. Mat. Mat. Fiz., 52:3 (2012),  379–387
  18. Nonlinear eigenvalue problem for a system of ordinary differential equations subject to a nonlocal condition

    Zh. Vychisl. Mat. Mat. Fiz., 52:2 (2012),  231–236
  19. An efficient method for solving difference systems for elliptic differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 51:12 (2011),  2247–2252
  20. A nonlocal problem for singular linear systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011),  1228–1235
  21. A modification of one method for solving nonlinear self-adjoint eigenvalue problems for hamiltonian systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 51:1 (2011),  39–43
  22. On a singular nonlinear self-adjoint spectral problem for differential-algebraic systems of equations

    Zh. Vychisl. Mat. Mat. Fiz., 50:2 (2010),  249–254
  23. On the general nonlinear selfadjoint spectral problem for systems of ordinary differential equations with singularities

    Zh. Vychisl. Mat. Mat. Fiz., 50:1 (2010),  38–43
  24. General nonlinear self-adjoint eigenvalue problem for systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 49:4 (2009),  624–627
  25. On the index of the boundary value problem for a homogeneous Hamiltonian system of differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 49:3 (2009),  490–497
  26. On the self-adjoint nonlinear eigenvalue problem for Hamiltonian systems of ordinary differential equations with singularities

    Zh. Vychisl. Mat. Mat. Fiz., 48:7 (2008),  1202–1208
  27. Nonlinear eigenvalue problem for second-order Hamiltonian systems

    Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008),  999–1002
  28. A method for solving nonlinear spectral problems for a class of systems of differential algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007),  829–834
  29. On certain properties of a nonlinear eigenvalue problem for Hamiltonian systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007),  638–645
  30. Calculation of solutions to the Mathieu equation and of related quantities

    Zh. Vychisl. Mat. Mat. Fiz., 47:3 (2007),  414–423
  31. A method for solving boundary value problems and spectral problems for linear differential-algebraic systems

    Differ. Uravn., 42:7 (2006),  874–882
  32. Highly accurate calculation of radial spheroidal functions

    Zh. Vychisl. Mat. Mat. Fiz., 46:6 (2006),  996–1001
  33. Numerical stability of a method for transferring boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 46:3 (2006),  401–406
  34. Highly accurate calculation of agular spheroidal functions

    Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006),  12–17
  35. On a method for solving the nonlinear eigenvalue problem for a differential algebraic system of equations

    Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005),  1575–1579
  36. On a method for solving boundary value problems for linear differential algebraic system of equations

    Zh. Vychisl. Mat. Mat. Fiz., 45:7 (2005),  1192–1195
  37. Selection of slowly growing sequences whose members satisfy given recursions

    Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005),  661–668
  38. How to Single out Solutions Bounded at a Singular Point for Some Differential-Algebraic Systems

    Differ. Uravn., 40:7 (2004),  893–897
  39. On the implementation of an elimination method in linear problems with inexactly specified initial data

    Zh. Vychisl. Mat. Mat. Fiz., 44:4 (2004),  640–649
  40. A method for solving a nonlinear nonself-adjoint spectral problem for some systems of linear ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 44:1 (2004),  104–110
  41. A Nonlinear Self-Adjoint Spectral Problem for Differential-Algebraic Equations

    Differ. Uravn., 39:7 (2003),  867–878
  42. On a nonlinear self-adjoint eigenvalue problem for a certain class of differential algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 43:3 (2003),  410–421
  43. On the application of Craig's method to the solution of linear equations with inexact initial conditions

    Zh. Vychisl. Mat. Mat. Fiz., 42:12 (2002),  1763–1770
  44. On a nonlinear selfadjoint spectral problem for some differential-algebraic equations of index $1$

    Zh. Vychisl. Mat. Mat. Fiz., 42:7 (2002),  996–1012
  45. Calculation of eigenvalues in a nonlinear spectral problem for the Hamiltonian systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 41:1 (2001),  29–38
  46. Modifying certain elimination methods

    Zh. Vychisl. Mat. Mat. Fiz., 40:7 (2000),  974–979
  47. On the completeness of the set of eigenvectors of a nonlinear selfadjoint eigenvalue problem

    Zh. Vychisl. Mat. Mat. Fiz., 40:4 (2000),  503–504
  48. A method for solving the multiparameter eigenvalue problem for certain systems of differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 40:1 (2000),  21–29
  49. A method for solving a nonlinear selfadjoint spectral problem for a second-order ordinary differential equation with coupled boundary conditions

    Differ. Uravn., 35:2 (1999),  206–211
  50. Nonlinear spectral problem for the Sturm–Liouville equations with coupled boundary conditions depending on a spectral parameter

    Zh. Vychisl. Mat. Mat. Fiz., 39:7 (1999),  1119–1133
  51. A method for solving selfadjoint multiparameter spectral problems for systems of equations with singularities

    Zh. Vychisl. Mat. Mat. Fiz., 38:10 (1998),  1636–1640
  52. A method for finding the smallest eigenvalue of a nonlinear selfadjoint spectral problem

    Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998),  1095–1105
  53. An elimination method for linear problems

    Zh. Vychisl. Mat. Mat. Fiz., 38:4 (1998),  547–556
  54. On the convergence of an elimination method

    Zh. Vychisl. Mat. Mat. Fiz., 38:3 (1998),  355–364
  55. The argument principle in a spectral problem for systems of ordinary differential equations with singularities

    Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998),  61–67
  56. A method for solving selfadjoint multiparameter spectral problems for weakly coupled sets of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 37:5 (1997),  566–571
  57. The instability of longshore currents in the breaker zone

    Zh. Vychisl. Mat. Mat. Fiz., 36:10 (1996),  103–110
  58. On a singular boundary-value problem for linear Hamiltonian systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 36:8 (1996),  45–56
  59. Comparison of solution of shooting equations under the transfer of boundary conditions at infinity for Hamilton linear systems

    Zh. Vychisl. Mat. Mat. Fiz., 35:12 (1995),  1808–1818
  60. On a numerical-analytic investigation of problems of the diffraction of a plane sound wave by ideal prolate spheroids and triaxial ellipsoids

    Zh. Vychisl. Mat. Mat. Fiz., 35:9 (1995),  1374–1400
  61. An elimination method for linear problems

    Zh. Vychisl. Mat. Mat. Fiz., 35:4 (1995),  499–510
  62. The properties of Craig's procedure for solving linear ill-posed problems

    Zh. Vychisl. Mat. Mat. Fiz., 35:1 (1995),  144–150
  63. On some multiparameter spectral problems of mathematical physics

    Mat. Model., 6:6 (1994),  14–21
  64. A generalization of the method for solving the eigenvalue problem for Hamiltonian systems

    Zh. Vychisl. Mat. Mat. Fiz., 34:12 (1994),  1896–1901
  65. A method of solving some multiparameter eigenvalue problems that arise when using Fourier's method

    Zh. Vychisl. Mat. Mat. Fiz., 34:10 (1994),  1524–1525
  66. Determining the number of eigenvalues of a spectral problem

    Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994),  776–783
  67. On the problem of the diffraction of a plane acoustic wave by a triaxial ellipsoid

    Differ. Uravn., 29:8 (1993),  1347–1357
  68. Transverse oscillations of flexible thread with time-varying length in the flow

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 5,  45–48
  69. Numerical investigation of axisymmetric free oscillations in a vacuum and excitation in a compressible medium of a prolate cylindrical shell with hemispherical ends

    Zh. Vychisl. Mat. Mat. Fiz., 33:10 (1993),  1550–1580
  70. Approximate solutions, based on comparison theorems, of scalar and matrix Riccati equations on an infinite interval

    Zh. Vychisl. Mat. Mat. Fiz., 33:1 (1993),  35–51
  71. Distribution of concentration of shallow and deep charged centers in beryllium-ion-doped indium-phosphide layers

    Fizika i Tekhnika Poluprovodnikov, 26:3 (1992),  500–505
  72. A method for solving biharmonic-type equation with a singularly occuring small parameter

    Zh. Vychisl. Mat. Mat. Fiz., 32:4 (1992),  567–575
  73. Statistical modelling of the surface discharge of a gas into the approach stream

    Zh. Vychisl. Mat. Mat. Fiz., 31:12 (1991),  1849–1857
  74. Some possibilities of the method of operator splitting

    Zh. Vychisl. Mat. Mat. Fiz., 31:7 (1991),  953–961
  75. A method of finding the eigenvalues and eigenfunctions of a self-conjugate differential problem

    Zh. Vychisl. Mat. Mat. Fiz., 31:6 (1991),  819–831
  76. A method for solving ill-conditioned systems of linear algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 31:4 (1991),  483–491
  77. Computation of radial wave functions for spheroids and triaxial ellipsoids by the modified phase function method

    Zh. Vychisl. Mat. Mat. Fiz., 31:2 (1991),  212–234
  78. A method of solving stiff boundary-value problems based on operator splitting

    Zh. Vychisl. Mat. Mat. Fiz., 29:12 (1989),  1800–1810
  79. Evaluation of angular Lamé wave functions by solving auxiliary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 29:6 (1989),  813–830
  80. Numerical studies of free and forced oscillations in a compressible fluid of closed elastic shells of revolution with positive moment

    Zh. Vychisl. Mat. Mat. Fiz., 29:5 (1989),  747–764
  81. Numerical investigations of free electrical axisymmetric oscillations of an ideally conducting prolate spheroid

    Zh. Vychisl. Mat. Mat. Fiz., 29:4 (1989),  535–553
  82. Numerical solution of some algebraic problems arising in the theory of stability

    Zh. Vychisl. Mat. Mat. Fiz., 24:3 (1984),  339–347
  83. The rate of convergence of an iteration method for the solution of equations containing monotone operators

    Zh. Vychisl. Mat. Mat. Fiz., 24:2 (1984),  305–308
  84. Evaluation of prolate spheroidal function by solving the corresponding differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 24:1 (1984),  3–18
  85. Calculation of macroscopic parameters in the Monte Carlo method of direct statistical modeling

    Dokl. Akad. Nauk SSSR, 271:2 (1983),  315–318
  86. The calculation of eigenvalues and eigenfunctions of ordinary differential equations with singularities

    Zh. Vychisl. Mat. Mat. Fiz., 20:5 (1980),  1155–1173
  87. On the behaviour of boundary conditions moved to the neighborhood of a regular singular point

    Zh. Vychisl. Mat. Mat. Fiz., 20:4 (1980),  901–908
  88. An elimination method for linear problems

    Zh. Vychisl. Mat. Mat. Fiz., 20:1 (1980),  226–230
  89. Certain equations that contain monotone discontinuous operators

    Dokl. Akad. Nauk SSSR, 212:3 (1973),  529–531
  90. The existence of solutions of certain equations that contain monotone discontinuous transformations

    Zh. Vychisl. Mat. Mat. Fiz., 12:2 (1972),  525–528
  91. The solution of some equations containing discontinuous monotonic operators

    Zh. Vychisl. Mat. Mat. Fiz., 12:1 (1972),  204–207
  92. The boundary conditions at the singular point for systems of linear ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 11:1 (1971),  275–278
  93. On the numerical solution of some sets of differential equations for problems of Stefan's type

    Zh. Vychisl. Mat. Mat. Fiz., 11:1 (1971),  121–128
  94. Remarks on finding the eigenvalues and eigenvectors of matrices which arise in the application of Ritz's method or in the difference method

    Zh. Vychisl. Mat. Mat. Fiz., 7:3 (1967),  644–647
  95. On the application of the method of successive substitution to the determination of periodic solutions of differential and difference equations

    Zh. Vychisl. Mat. Mat. Fiz., 3:2 (1963),  377–381
  96. Notes on a work of Greenstadt and of Lotkin

    Zh. Vychisl. Mat. Mat. Fiz., 3:1 (1963),  180–181
  97. On the separation of the principal part of some algebraic problems

    Zh. Vychisl. Mat. Mat. Fiz., 2:1 (1962),  141–145
  98. On the transfer of the condition of boundedness for some systems of ordinary linear differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 1:4 (1961),  733–737
  99. On the transfer of boundary conditions for systems of ordinary linear differential equations (a variant of the dispersive method)

    Zh. Vychisl. Mat. Mat. Fiz., 1:3 (1961),  542–545
  100. On the solution of the equation for the energy of the ionized hydrogen molecules

    Zh. Vychisl. Mat. Mat. Fiz., 1:2 (1961),  351–354
  101. A variation of the 'dispersion' method

    Zh. Vychisl. Mat. Mat. Fiz., 1:2 (1961),  349–351
  102. Spaces with affine connection and symmetric spaces

    Uspekhi Mat. Nauk, 5:2(36) (1950),  72–147

  103. Correction

    Zh. Vychisl. Mat. Mat. Fiz., 47:1 (2007),  176
  104. Correction

    Zh. Vychisl. Mat. Mat. Fiz., 47:1 (2007),  176
  105. Correction

    Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005),  1728
  106. Correction: “A method for solving a nonlinear nonself-adjoint spectral problem for some systems of linear ordinary differential equations”

    Zh. Vychisl. Mat. Mat. Fiz., 44:11 (2004),  2112
  107. Correction: “A method for solving selfadjoint multiparameter spectral problems for systems of equations with singularities”

    Zh. Vychisl. Mat. Mat. Fiz., 39:12 (1999),  2112
  108. Erratum: “Some possibilities of the operator splitting method”

    Zh. Vychisl. Mat. Mat. Fiz., 32:5 (1992),  674
  109. Errata

    Zh. Vychisl. Mat. Mat. Fiz., 30:6 (1990),  956
  110. On the article: “The existence of solutions of certain equations that contain monotone discontinuous transformations”

    Zh. Vychisl. Mat. Mat. Fiz., 14:2 (1974),  523–524
  111. On the article: “The existence of solutions of certain equations that contain monotone discontinuous transformations”

    Zh. Vychisl. Mat. Mat. Fiz., 13:2 (1973),  528
  112. Letter to the editor

    Zh. Vychisl. Mat. Mat. Fiz., 3:2 (1963),  416


© Steklov Math. Inst. of RAS, 2026