RUS  ENG
Full version
PEOPLE

Sadovnichaya Inna Viktorovna

Publications in Math-Net.Ru

  1. Operator group generated by a one-dimensional Dirac system

    Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023),  79–81
  2. Equiconvergence of spectral decompositions for Sturm–Liouville operators with a distributional potential in scales of spaces

    Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021),  56–58
  3. Spectral analysis of one-dimensional Dirac system with summable potential and Sturm–Liouville operator with distribution coefficients

    CMFD, 66:3 (2020),  373–530
  4. On the existence of an operator group generated by the one-dimensional Dirac system

    Tr. Mosk. Mat. Obs., 80:2 (2019),  275–294
  5. Uniform basis property of the system of root vectors of the Dirac operator

    CMFD, 64:1 (2018),  180–193
  6. Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces

    Trudy Mat. Inst. Steklova, 293 (2016),  296–324
  7. The Riesz basis property with brackets for Dirac systems with summable potentials

    CMFD, 58 (2015),  128–152
  8. Equiconvergence theorems for Sturm–Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm)

    Eurasian Math. J., 1:1 (2010),  137–146
  9. Equiconvergence of eigenfunction expansions for Sturm-Liouville operators with a distributional potential

    Mat. Sb., 201:9 (2010),  61–76
  10. Equiconvergence of the Trigonometric Fourier Series and the Expansion in Eigenfunctions of the Sturm–Liouville Operator with a Distribution Potential

    Trudy Mat. Inst. Steklova, 261 (2008),  249–257
  11. A new estimate for the spectral function of the self-adjoint extension in $L^2(\mathbb R)$ of the Sturm–Liouville operator with a uniformly locally integrable potential

    Differ. Uravn., 42:2 (2006),  188–201
  12. A new estimate for the approximation of solutions of the Sturm–Liouville equation with an analytic potential by partial sums of asymptotic series

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 1,  10–15
  13. Regularized Traces for a Class of Singular Operators

    Differ. Uravn., 37:6 (2001),  771–778
  14. Direct and inverse Kolmogorov equations for the stochastic Schrödinger equation

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 6,  15–20
  15. About one representation of the solution of Schrödinger stochastic equation by means of an integral over the Wiener measure

    Fundam. Prikl. Mat., 4:2 (1998),  659–667

  16. Andrei Andreevich Shkalikov (on his seventieth birthday)

    Tr. Mosk. Mat. Obs., 80:2 (2019),  133–145


© Steklov Math. Inst. of RAS, 2026