RUS  ENG
Full version
PEOPLE

Alikhanov Anatoly Alievich

Publications in Math-Net.Ru

  1. Higher-order approximation difference scheme for the generalized aller equation of fractional order

    Vladikavkaz. Mat. Zh., 23:3 (2021),  5–15
  2. Local one-dimensional scheme for the first initial-boundary value problem for the multidimensional fractional-order convection–diffusion equation

    Zh. Vychisl. Mat. Mat. Fiz., 61:7 (2021),  1082–1100
  3. Simulation of drift-diffusion transport of charge carriers in semiconductor layers with a fractal structure in an alternating electric field

    Fizika i Tekhnika Poluprovodnikov, 51:6 (2017),  787–791
  4. Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation

    Zh. Vychisl. Mat. Mat. Fiz., 56:4 (2016),  572–586
  5. The Steklov nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  15–23
  6. Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(17) (2008),  13–20
  7. Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods

    Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008),  1619–1628
  8. Априорные оценки для параболических уравнений с подвижной нагрузкой

    Matem. Mod. Kraev. Zadachi, 3 (2006),  22–25
  9. К вопросу об аппроксимации дифференциального уравнения дробного порядка разностным уравнением

    Matem. Mod. Kraev. Zadachi, 3 (2005),  21–24


© Steklov Math. Inst. of RAS, 2026