|
|
Publications in Math-Net.Ru
-
Higher-order approximation difference scheme for the generalized aller equation of fractional order
Vladikavkaz. Mat. Zh., 23:3 (2021), 5–15
-
Local one-dimensional scheme for the first initial-boundary value problem for the multidimensional fractional-order convection–diffusion equation
Zh. Vychisl. Mat. Mat. Fiz., 61:7 (2021), 1082–1100
-
Simulation of drift-diffusion transport of charge carriers in semiconductor layers with a fractal structure in an alternating electric field
Fizika i Tekhnika Poluprovodnikov, 51:6 (2017), 787–791
-
Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation
Zh. Vychisl. Mat. Mat. Fiz., 56:4 (2016), 572–586
-
The Steklov nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013), 15–23
-
Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(17) (2008), 13–20
-
Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods
Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008), 1619–1628
-
Априорные оценки для параболических уравнений с подвижной нагрузкой
Matem. Mod. Kraev. Zadachi, 3 (2006), 22–25
-
К вопросу об аппроксимации дифференциального уравнения дробного порядка разностным уравнением
Matem. Mod. Kraev. Zadachi, 3 (2005), 21–24
© , 2026