RUS  ENG
Full version
PEOPLE

Shcheglov Alekseĭ Yur'evich

Publications in Math-Net.Ru

  1. The inverse problem for a age-structured population dynamics model with account to migration flows

    Sib. Zh. Vychisl. Mat., 27:1 (2024),  113–120
  2. Reconstruction of two functions in the model of vibrations of a string one end of which is placed in a moving medium

    Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023),  765–777
  3. On the reconstruction of functional coefficients for a quasi-stable population dynamics model

    Mat. Model., 34:3 (2022),  85–100
  4. Uniqueness of the Solution of the Inverse Problem for a Model of the Dynamics of an Age-Structured Population

    Mat. Zametki, 111:1 (2022),  125–133
  5. An iterative method for solving an inverse problem for a first-order nonlinear partial differential equation with estimates of guaranteed accuracy and the number of steps

    Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013),  275–280
  6. A method for finding coefficients of a quasilinear hyperbolic equation

    Zh. Vychisl. Mat. Mat. Fiz., 46:5 (2006),  813–833
  7. Inverse coefficient problem for a quasilinear hyperbolic equation with final overdetermination

    Zh. Vychisl. Mat. Mat. Fiz., 46:4 (2006),  647–666
  8. A method for an approximate solution of an inverse problem for a semilinear hyperbolic equation

    Zh. Vychisl. Mat. Mat. Fiz., 43:1 (2003),  111–126
  9. A method for solving an inverse boundary value problem in sorption dynamics with an allowance for diffusion in sorbent particles

    Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002),  580–590
  10. A method for approximate solution in $C^2$ of a hyperbolic equation with Lipschitz nonlinearity

    Zh. Vychisl. Mat. Mat. Fiz., 41:3 (2001),  420–435
  11. Some overdetermined problems for differential equations and their applications

    Zh. Vychisl. Mat. Mat. Fiz., 40:9 (2000),  1330–1338
  12. On the monotonicity of the solution of a mixed problem for a quasilinear heat equation with a discontinuous coefficient

    Zh. Vychisl. Mat. Mat. Fiz., 36:6 (1996),  86–94
  13. Uniform approximation of a solution of an inverse problem by the quasireversibility method

    Mat. Zametki, 53:2 (1993),  168–174
  14. A method for the approximate solution of an inverse problem for the heat-conduction equation

    Zh. Vychisl. Mat. Mat. Fiz., 32:6 (1992),  904–916
  15. A method of solving the problem of optimizing the operation of an industrial complex

    Zh. Vychisl. Mat. Mat. Fiz., 31:10 (1991),  1588–1592

  16. Московский государственный университет им. М.В. Ломоносова

    Kvant, 2007, no. 1,  44–52
  17. Московский государственный университет им. М.В. Ломоносова

    Kvant, 2006, no. 1,  44–52


© Steklov Math. Inst. of RAS, 2026