RUS  ENG
Full version
PEOPLE

Bulatov Mikhail Valeryanovich

Publications in Math-Net.Ru

  1. Extrapolation multistep methods for numerical solution of second-order differential algebraic equations

    Sib. Zh. Vychisl. Mat., 28:2 (2025),  121–140
  2. Collocation-variational approaches to the numerical solution of Volterra integral equations of the first kind

    Zh. Vychisl. Mat. Mat. Fiz., 65:1 (2025),  3–9
  3. Numerical solution of differential-algebraic equations of arbitrary index with Riemann–Liouville derivative

    Russian Universities Reports. Mathematics, 28:141 (2023),  13–25
  4. Stability analysis of nonclassical difference schemes for nonlinear Volterra integral equations of the second kind

    Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023),  881–890
  5. On two-dimensional systems of Volterra integral equations of the first kind

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 208 (2022),  3–10
  6. Collocation-variational approaches to the solution to Volterra integral equations of the first kind

    Zh. Vychisl. Mat. Mat. Fiz., 62:1 (2022),  105–112
  7. Numerical solution of integral-algebraic equations with a weak boundary singularity by $k$-step methods

    Zh. Vychisl. Mat. Mat. Fiz., 61:11 (2021),  1825–1838
  8. The index and split forms of linear differential-algebraic equations

    Bulletin of Irkutsk State University. Series Mathematics, 28 (2019),  21–35
  9. On a certain class of quasilinear second-order differential-algebraic equations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 173 (2019),  17–25
  10. Construction of implicit multistep methods for solving integral algebraic equations

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:3 (2019),  310–322
  11. Block difference schemes of high order for stiff linear differential-algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 59:7 (2019),  1100–1107
  12. Convergence analysis of linear multistep methods for a class of delay differential-algebraic equations

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018),  78–93
  13. On some results of investigation of singular systems of integrodifferential equations obtained by Yu. Ye. Boyarintsev research group

    Bulletin of Irkutsk State University. Series Mathematics, 20 (2017),  17–31
  14. Applications and methods for the numerical solution of a class of integer-algebraic equations with variable limits of integration

    Bulletin of Irkutsk State University. Series Mathematics, 20 (2017),  3–16
  15. Numerical solution of integral-algebraic equations with weakly singular kernels by $k$-step methods

    Bulletin of Irkutsk State University. Series Mathematics, 13 (2015),  3–15
  16. On the loss of $L$-stability of the implicit Euler method for a linear problem

    Bulletin of Irkutsk State University. Series Mathematics, 12 (2015),  3–11
  17. An integral method for the numerical solution of nonlinear singular boundary value problems

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015),  5–13
  18. Multistep Method for Solving Degenerate Integral-Differential Equations

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:3 (2014),  93–106
  19. Features of behavior of numerical methods for solving Volterra integral equations of the second kind

    Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014),  496–502
  20. A class of singular integro-differential equations

    Bulletin of Irkutsk State University. Series Mathematics, 6:1 (2013),  14–19
  21. On Stable Algorithms for Numerical Solution of Integral-Algebraic Equations

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:4 (2013),  5–14
  22. An analysis of multistep methods for solving integral-algebraic equations: Construction of stability domains

    Zh. Vychisl. Mat. Mat. Fiz., 53:9 (2013),  1448–1459
  23. Numerical solution of differential-algebraic equations using the spline collocation-variation method

    Zh. Vychisl. Mat. Mat. Fiz., 53:3 (2013),  377–389
  24. Numerical solution of integral-algebraic equations for multistep methods

    Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012),  829–839
  25. Numerical methods of solution of boundary-value problem for differential-algebraic equations of the second order

    Bulletin of Irkutsk State University. Series Mathematics, 4:4 (2011),  2–11
  26. Not classic difference schemes for ordinary differential equations of the second order(initial value problems)

    Zhurnal SVMO, 13:1 (2011),  22–28
  27. On a family of singular integro-differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 51:9 (2011),  1665–1673
  28. A class of one-step one-stage methods for stiff systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011),  1251–1265
  29. On block difference schemes for differential algebraic equations

    Bulletin of Irkutsk State University. Series Mathematics, 3:2 (2010),  2–12
  30. Об одном классе интегро–алгебраических уравнений с переменными пределами интегрирования

    Zhurnal SVMO, 12:2 (2010),  40–45
  31. Numerical solution boundary problem for linear differential-algebraic equations of second order

    Zhurnal SVMO, 12:1 (2010),  52–58
  32. On first- and second-order difference schemes for differential-algebraic equations of index at most two

    Zh. Vychisl. Mat. Mat. Fiz., 50:11 (2010),  1909–1918
  33. On the properties of finite-dimensional systems of nonlinear equations with multiple solutions

    Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11,  20–36
  34. On multiple solutions of differential algebraic equations

    Trudy SVMO, 10:1 (2008),  20–36
  35. Numerical solution of integro-differential systems with a degenerate matrix multiplying the derivative by multistep methods

    Differ. Uravn., 42:9 (2006),  1248–1255
  36. Выбор шага интегрирования для L-устойчивой 1-стадийной схемы 2-го порядка

    Matem. Mod. Kraev. Zadachi, 3 (2006),  33–35
  37. Application of matrix polynomials to investigation of singular equations

    Lobachevskii J. Math., 20 (2005),  17–29
  38. Construction of a One-Stage $L$-Stable Second-Order Method

    Differ. Uravn., 39:4 (2003),  554–556
  39. Integro-Differential Systems with a Degenerate Matrix Multiplying the Derivative

    Differ. Uravn., 38:5 (2002),  692–697
  40. On the regularization of degenerate integrodifferential equations

    Zh. Vychisl. Mat. Mat. Fiz., 42:11 (2002),  1666–1672
  41. A numerical method for solving differential-algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002),  459–470
  42. Regularization of singular systems of Volterra integral equations

    Zh. Vychisl. Mat. Mat. Fiz., 42:3 (2002),  330–335
  43. Reduction of degenerate systems of Volterra-type integral equations to systems of the second kind

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 11,  14–21
  44. On difference schemes for differential-algebraic systems

    Zh. Vychisl. Mat. Mat. Fiz., 38:10 (1998),  1641–1650
  45. Numerical solution of a system of Volterra equations of the first kind

    Zh. Vychisl. Mat. Mat. Fiz., 38:4 (1998),  607–611
  46. A perturbation method for differential-algebraic systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 11,  3–9
  47. Transformations of differential-algebraic systems of equations

    Zh. Vychisl. Mat. Mat. Fiz., 34:3 (1994),  360–372
  48. Numerical solution of degenerate systems of second-order ordinary differential equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 1,  21–26

  49. To the 70th anniversary of professor V. F. Chistyakov

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018),  169–176
  50. Yuri Yeremeyevich Boyarintsev. Essay Research and Teaching

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:4 (2013),  134–139


© Steklov Math. Inst. of RAS, 2026