|
|
Publications in Math-Net.Ru
-
A gradient descent method for solving of one class of nonlinear multiparameter eigenvalue problems
Tr. Inst. Mat., 22:1 (2014), 122–130
-
Interpolation polynomials in Hilbert space and some extremum problems
Fundam. Prikl. Mat., 6:1 (2000), 237–247
-
Raising the accuracy of approximations of polynomial operators in
Hilbert spaces by the interpolation method
Dokl. Akad. Nauk, 334:1 (1994), 20–22
-
Polynomial interpolation of operators in vector spaces
Dokl. Akad. Nauk, 329:2 (1993), 135–139
-
Hermitian interpolation of operators in Hilbert spaces
Dokl. Akad. Nauk, 327:2 (1992), 183–186
-
Polynomial interpolation of operators in Hilbert spaces
Dokl. Akad. Nauk, 324:4 (1992), 742–745
-
Polynomial interpolation of nonlinear functionals
Dokl. Akad. Nauk SSSR, 321:3 (1991), 470–473
-
On the general structure of polynomial functional interpolants
Dokl. Akad. Nauk SSSR, 318:4 (1991), 805–808
-
An interpolation formula of Newton type for nonlinear functionals
Dokl. Akad. Nauk SSSR, 307:3 (1989), 534–537
-
An interpolation method for solving the identification problem for
a function system described by the Uryson operator
Dokl. Akad. Nauk SSSR, 300:6 (1988), 1332–1336
-
A way of interpolating on a segment
Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 1, 24–30
© , 2026