RUS  ENG
Full version
PEOPLE

Chernov Andrei Vladimirovich

Publications in Math-Net.Ru

  1. On optimal feedback control for operator equations of the second kind

    Zh. Vychisl. Mat. Mat. Fiz., 65:11 (2025),  1834–1848
  2. On exact observability of a nonlinear evolutionary equation with a bounded right-hand side operator on a small interval

    Izv. IMI UdGU, 64 (2024),  97–118
  3. On application of Gaussian kernels and Laplace functions combined with Kolmogorov's theorem for approximation of functions of several variables

    Izv. IMI UdGU, 63 (2024),  114–131
  4. On solvability of a pursuit game with nonlinear dynamics in the Hilbert space

    Mat. Teor. Igr Pril., 16:1 (2024),  92–125
  5. Preservation of global solvability and estimation of solutions of some controlled nonlinear partial differential equations of the second order

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:4 (2024),  541–562
  6. Investigation of conditions for preserving global solvability of operator equations by means of comparison systems in the form of functional-integral equations in $\mathbf{C}[0;T]$

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:1 (2024),  109–136
  7. Existence of an optimal control for a semilinear evolution equation with unbounded operator

    Zh. Vychisl. Mat. Mat. Fiz., 64:5 (2024),  745–765
  8. On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the Laplace integral

    Izv. IMI UdGU, 61 (2023),  187–205
  9. Differential games in a Banach space without discrimination

    Mat. Teor. Igr Pril., 15:1 (2023),  90–127
  10. On the existence of optimal control in the problem of optimizing the lowest coefficient of a semilinear evolutionary equation

    Zh. Vychisl. Mat. Mat. Fiz., 63:7 (2023),  1084–1099
  11. On explicit expression of the solution to the regularizing by Tikhonov optimization problem in terms of the regularization parameter in the finite-dimensional case

    Izv. IMI UdGU, 60 (2022),  90–110
  12. On flexibility of constraints system under approximation of optimal control problems

    Izv. IMI UdGU, 59 (2022),  114–130
  13. On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games

    Mat. Teor. Igr Pril., 14:2 (2022),  99–122
  14. On totally global solvability of evolutionary Volterra equation of the second kind

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:4 (2022),  593–614
  15. On totally global solvability of evolutionary equation with monotone nonlinear operator

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:1 (2022),  130–149
  16. On uniform monotone approximation of continuous monotone functions with the help of translations and dilations of the Laplace integral

    Zh. Vychisl. Mat. Mat. Fiz., 62:4 (2022),  580–596
  17. Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 192 (2021),  131–141
  18. On some general scheme of constructing iterative methods for searching the Nash equilibrium in concave games

    Mat. Teor. Igr Pril., 13:3 (2021),  75–121
  19. On differentiation of functional in problem on parametric coefficient optimization in semilinear global electric circuit equation

    Ufimsk. Mat. Zh., 13:3 (2021),  155–177
  20. On totally global solvability of evolutionary equation with unbounded operator

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:2 (2021),  331–349
  21. Differential games in a Banach space on a fixed chain

    Mat. Teor. Igr Pril., 12:3 (2020),  89–118
  22. On preservation of global solvability of controlled second kind operator equation

    Ufimsk. Mat. Zh., 12:1 (2020),  56–82
  23. On the uniqueness of solution to the inverse problem of the atmospheric electricity

    Russian Universities Reports. Mathematics, 25:129 (2020),  85–99
  24. On totally global solvability of controlled second kind operator equation

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:1 (2020),  92–111
  25. Gaussian functions combined with Kolmogorov's theorem as applied to approximation of functions of several variables

    Zh. Vychisl. Mat. Mat. Fiz., 60:5 (2020),  784–801
  26. On application of Gaussian functions to numerical solution of optimal control problems

    Avtomat. i Telemekh., 2019, no. 6,  51–69
  27. On the problem of solving multimove games under time deficit

    Mat. Teor. Igr Pril., 11:2 (2019),  96–120
  28. On the total preservation of univalent global solvability for a first kind operator equation with controlled added nonlinearity

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 11,  60–74
  29. On differentiation of functionals of approximating problems in the frame of solution of free time optimal control problems by the sliding nodes method

    Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018),  861–876
  30. Majorant sign of the first order for totally global solvability of a controlled functional operator equation

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:4 (2018),  531–548
  31. Preservation of the solvability of a semilinear global electric circuit equation

    Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018),  2095–2111
  32. JPEG-like method of control parametrization for numerical solution of the distributed optimization problems

    Avtomat. i Telemekh., 2017, no. 8,  145–163
  33. On total preservation of solvability for a controlled Hammerstein type equation with non-isotone and non-majorized operator

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 6,  83–94
  34. On some approaches to searching the Nash equilibrium in concave games

    Mat. Teor. Igr Pril., 9:2 (2017),  62–104
  35. On the application of Gaussian functions for discretization of optimal control problems

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:4 (2017),  558–575
  36. On using Gaussian functions with varied parameters for approximation of functions of one variable on a finite segment

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:2 (2017),  267–282
  37. On the uniqueness of solution to the inverse problem of determination parameters in the senior coefficient and the righthand side of an elliptic equation

    Dal'nevost. Mat. Zh., 16:1 (2016),  96–110
  38. On the structure of a solution set of controlled initial-boundary value problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 2,  75–86
  39. Differentiation of a functional in the problem of parametric coefficient optimization in the global electric circuit equation

    Zh. Vychisl. Mat. Mat. Fiz., 56:9 (2016),  1586–1601
  40. On the analogue of Wintner's theorem for a controlled elliptic equation

    Izv. IMI UdGU, 2015, no. 2(46),  228–235
  41. On existence of the Nash equilibrium in a differential game associated with elliptic equations: the monotone case

    Mat. Teor. Igr Pril., 7:3 (2015),  48–78
  42. On piecewise constant approximation in distributed optimization problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  264–279
  43. On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:2 (2015),  230–243
  44. On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation

    Zh. Vychisl. Mat. Mat. Fiz., 55:2 (2015),  213–228
  45. On convexity local conditions for attainable tubes of controlled distributed systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 11,  72–86
  46. On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations

    Mat. Teor. Igr Pril., 6:1 (2014),  91–115
  47. On the smoothness of an approximated optimization problem for a Goursat–Darboux system on a varied domain

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  305–321
  48. On total preservation of global solvability for a Goursat problem associated with a controlled semilinear pseudoparabolic equation

    Vladikavkaz. Mat. Zh., 16:3 (2014),  55–63
  49. On applicability of control parametrization technique to solving distributed optimization problems

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1,  102–117
  50. Uniformly continuous dependence of a solution to a controlled functional operator equation on a shift of control

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 5,  36–50
  51. On some approach to construction of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with partial differential equations

    Mat. Teor. Igr Pril., 5:1 (2013),  104–123
  52. A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces

    Mat. Zametki, 94:5 (2013),  757–769
  53. On $\varepsilon$-equilibrium in noncooperative functional operator $n$-person games

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013),  316–328
  54. On controllability of nonlinear distributed systems on a set of discretized controls

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 1,  83–98
  55. Smooth finite-dimensional approximations of distributed optimization problems via control discretization

    Zh. Vychisl. Mat. Mat. Fiz., 53:12 (2013),  2029–2043
  56. To investigation of dependence of solution to controlled functional operator equation on a shift of control

    Izv. IMI UdGU, 2012, no. 1(39),  157–158
  57. A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 3,  62–73
  58. On existence of $\varepsilon$-equilibrium in Volterra functional operator games without discrimination

    Mat. Teor. Igr Pril., 4:1 (2012),  74–92
  59. On Volterra type generalization of monotonization method for nonlinear functional operator equations

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 2,  84–99
  60. Sufficient conditions for the controllability of nonlinear distributed systems

    Zh. Vychisl. Mat. Mat. Fiz., 52:8 (2012),  1400–1414
  61. A majorant criterion for the total preservation of global solvability of controlled functional operator equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 3,  95–107
  62. On Volterra functional operator games on a given set

    Mat. Teor. Igr Pril., 3:1 (2011),  91–117
  63. On the convergence of the conditional gradient method in distributed optimization problems

    Zh. Vychisl. Mat. Mat. Fiz., 51:9 (2011),  1616–1629
  64. О вольтерровых функционально-операторных играх

    Matem. Mod. Kraev. Zadachi, 2 (2010),  289–291
  65. Pointwise Estimation of the Difference of the Solutions of a Controlled Functional Operator Equation in Lebesgue Spaces

    Mat. Zametki, 88:2 (2010),  288–302
  66. О преодолении сингулярности распределенных систем управления

    Matem. Mod. Kraev. Zadachi, 2 (2006),  171–174
  67. О необходимых условиях оптимальности в задаче управления старшими коэффициентами системы гиперболических уравнений первого порядка

    Matem. Mod. Kraev. Zadachi, 2 (2005),  259–262
  68. К применению теоремы о неявной функции для обоснования градиентных методов в распределенных задачах оптимизации

    Matem. Mod. Kraev. Zadachi, 2 (2004),  265–268
  69. On some criteria for the quasinilpotency of functional operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 2,  77–80
  70. Operators in the spaces of measurable functions: the Volterra property and quasinilpotency

    Differ. Uravn., 34:10 (1998),  1402–1411


© Steklov Math. Inst. of RAS, 2026