The geometrical analysis of structure of spacelike, timelike and with sign-variable metric surfaces in pseudoeuclidean spaces; conditions of parabolicity of conformal type and its applications; alternating and degenerate Beltrami equation.
Main publications:
Alexander Kondrashov, “Boundary classes of non-compact Riemannian manifolds and Perron's method”, Funct. Anal. Appl., 59:2 (2025), 165–193
A. N. Kondrashov, “On the asymptotics of solutions of elliptic equations at the ends of non-compact Riemannian manifolds with metrics of a special form”, Izv. Math., 83:2 (2019), 287–314
A. N. Kondrashov, “Isothermic coordinates on irregular sewing surfaces”, Sib. Èlektron. Mat. Izv., 15 (2018), 658–676
A. N. Kondrashov, “On the theory of degenerate alternating Beltrami equations”, Sibirsk. Mat. Zh., 53:6 (2012), 1321–1337; Siberian Math. J., 53:6 (2012), 1061–1074
A. N. Kondrashov, "Two-dimensional minimal surfaces in pseudo-Euclidean space", (Russian) Dokl. Akad. Nauk 365 (1999), no. 3, 319–321.