RUS  ENG
Full version
PEOPLE

Knyagina Viktoriya Nikolaevna

Publications in Math-Net.Ru

  1. On a finite group factorized by a $B$-group and a $z$-group

    PFMT, 2025, no. 4(65),  67–71
  2. On the $p$-length of a product of two $B$-groups

    PFMT, 2024, no. 4(61),  48–52
  3. Finite groups with weakly subnormal Schmidt subgroups

    Tr. Inst. Mat., 31:1 (2023),  50–57
  4. Nilpotency of the derived subgroup of a finite group with semisubnormal Schmidt subgroups

    PFMT, 2022, no. 3(52),  86–89
  5. Finite groups with subnormal derived subgroups of $B$-groups

    PFMT, 2021, no. 3(48),  73–75
  6. Finite groups with semi-subnormal Schmidt subgroups

    Algebra Discrete Math., 29:1 (2020),  66–73
  7. Finite factored groups with soluble $\mathbb{X}$-subnormal factors

    PFMT, 2019, no. 2(39),  76–80
  8. On finite groups with Hall normally embedded Schmidt subgroups

    Algebra Discrete Math., 26:1 (2018),  90–96
  9. On the product of a $B$-group and a primary group

    PFMT, 2017, no. 3(32),  52–57
  10. On permutability of $n$-maximal subgroups with $p$-nilpotent Schmidt subgroups

    Tr. Inst. Mat., 24:1 (2016),  34–37
  11. Finite groups with nilpotent and Hall subgroups

    Diskr. Mat., 25:1 (2013),  137–143
  12. Finite factorizable groups with solvable $\mathbb P^2$-subnormal subgroups

    Sibirsk. Mat. Zh., 54:1 (2013),  77–85
  13. Finite groups with $\mathbb{P}$-subnormal biprimary subgroups

    Tr. Inst. Mat., 21:1 (2013),  63–68
  14. On the permutability of $n$-maximal subgroups with Schmidt subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  125–130
  15. Subgroups of a Finite Group Commuting with Biprimary Subgroups

    Mat. Zametki, 89:4 (2011),  524–529
  16. On the $\pi'$-properties of a finite group possessing a Hall $\pi$-subgroup

    Sibirsk. Mat. Zh., 52:2 (2011),  297–309
  17. On the permutability of maximal subgroups with Schmidt subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  126–133
  18. On $\pi$-solvability of a finite group with a partially permutable $\pi$-Hall subgroup

    PFMT, 2010, no. 1(2),  25–27
  19. On permutability of Sylow subgroups with Schmidt subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  130–139
  20. Finite groups with seminormal Schmidt subgroups

    Algebra Logika, 46:4 (2007),  448–458
  21. Finite groups with subnormal Schmidt subgroups

    Sibirsk. Mat. Zh., 45:6 (2004),  1316–1322
  22. On the $p$-length of a product of two Schmidt groups

    Sibirsk. Mat. Zh., 45:2 (2004),  329–333


© Steklov Math. Inst. of RAS, 2026