RUS  ENG
Full version
PEOPLE

Kyrov Vladimir Aleksandrovich

Publications in Math-Net.Ru

  1. On the local extension of the group of parallel translations of the four-dimensional space

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 244 (2025),  3–27
  2. Solution of two systems of functional equations

    Mat. Tr., 28:2 (2025),  87–101
  3. Surfaces on the pseudo-Helmholtz group

    Mat. Zametki, 117:2 (2025),  285–294
  4. Surfaces on Helmholtz-type groups

    Sibirsk. Mat. Zh., 66:5 (2025),  909–923
  5. Weingarten equations for surfaces on Helmholtz-type groups

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 235 (2024),  68–77
  6. Solution of a system of functional equations associated with an affine group

    Vladikavkaz. Mat. Zh., 26:3 (2024),  24–32
  7. On the local extension of the group of parallel translations in three-dimensional space. II

    Vladikavkaz. Mat. Zh., 26:2 (2024),  54–69
  8. Solutions of some systems of functional equations related to complex, double, and dual numbers

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 229 (2023),  37–46
  9. On the local extension of the group of parallel translations of four-dimensional space

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 225 (2023),  87–107
  10. Solution of three systems of functional equations related to complex, double and dual numbers

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 7,  42–51
  11. Left-invariant metrics of some three-dimensional Lie groups

    Mathematical notes of NEFU, 30:4 (2023),  24–36
  12. Analytical embedding for geometries of constant curvature

    Chebyshevskii Sb., 23:3 (2022),  133–146
  13. Local extension of the translation group of a plane to a locally doubly transitive transformation Lie group of the same plane

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204 (2022),  85–96
  14. On locally boundedly exactly doubly transitive lie groups of transformations of the space with a subgroup of parallel translations

    Mat. Tr., 25:2 (2022),  126–148
  15. Curves in the geometry of a special extension of Euclidean space

    Mathematical notes of NEFU, 29:1 (2022),  3–12
  16. Nondegenerate canonical solutions of a certain system of functional equations

    Vladikavkaz. Mat. Zh., 24:1 (2022),  44–53
  17. On local extension of the group of parallel translations in three-dimensional space

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:1 (2022),  62–80
  18. Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 194 (2021),  124–143
  19. Analytic embedding of pseudo-Helmholtz geometry

    Izv. Saratov Univ. Math. Mech. Inform., 21:3 (2021),  294–304
  20. Nondegenerate canonical solutions of one system of functional equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 8,  46–55
  21. Multiply transitive Lie group of transformations as a physical structure

    Mat. Tr., 24:2 (2021),  81–104
  22. To the question of local extension of the parallel translations group of three-dimensional space

    Vladikavkaz. Mat. Zh., 23:1 (2021),  32–42
  23. Hypercomplex numbers in some geometries of two sets. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 5,  39–54
  24. Commutative hypercomplex numbers and the geometry of two sets

    J. Sib. Fed. Univ. Math. Phys., 13:3 (2020),  373–382
  25. Аналитическое вложение геометрий со скалярным произведением

    Mat. Tr., 23:1 (2020),  150–168
  26. Analytic embedding of geometries of constant curvature on a pseudosphere

    Izv. Saratov Univ. Math. Mech. Inform., 19:3 (2019),  246–257
  27. Analytic embedding of some two-dimensional geometries of maximal mobility

    Sib. Èlektron. Mat. Izv., 16 (2019),  916–937
  28. Analytic embedding of three-dimensional simplicial geometries

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  125–136
  29. Analytical embedding of three-dimensional Helmholtz-type geometries

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019),  532–547
  30. The embedding of multidimensional special extensions of pseudo-Euclidean geometries

    Chelyab. Fiz.-Mat. Zh., 3:4 (2018),  408–420
  31. The analytical method for embedding multidimensional pseudo-Euclidean geometries

    Sib. Èlektron. Mat. Izv., 15 (2018),  741–758
  32. The groups of motions of some three-dimensional maximal mobility geometries

    Sibirsk. Mat. Zh., 59:2 (2018),  412–421
  33. On a family of functional equations

    Vladikavkaz. Mat. Zh., 20:3 (2018),  69–77
  34. On the embedding of two-dimetric phenomenologically symmetric geometries

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 56,  5–16
  35. Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:3 (2018),  305–327
  36. Solving of functional equations associated with the scalar product

    Chelyab. Fiz.-Mat. Zh., 2:1 (2017),  30–45
  37. Hypercomplex numbers in some geometries of two sets. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 7,  19–29
  38. The analytic method of embedding symplectic geometry

    Sib. Èlektron. Mat. Izv., 14 (2017),  657–672
  39. An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  167–181
  40. Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017),  42–53
  41. On a class of functional equations

    Mathematical Physics and Computer Simulation, 20:5 (2017),  17–26
  42. The pseudo-Helmholtz and dual Helmholtz planes with the Finsler geometry

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 6(44),  5–18
  43. The properly Helmholtz plane as Finsler geometry

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 4(42),  15–22
  44. Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:3 (2016),  312–323
  45. Projective geometry and phenomenological symmetry

    J. Sib. Fed. Univ. Math. Phys., 5:1 (2012),  82–90
  46. The Lie Algebra of the Group of Motions of a Phenomenologically Symmetric Geometry

    Mat. Zametki, 91:2 (2012),  312–315
  47. On some class of functional-differential equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(26) (2012),  31–38
  48. Functional equations in pseudo-Euclidean geometry

    Sib. Zh. Ind. Mat., 13:4 (2010),  38–51
  49. Functional equations in symplectic geometry

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010),  149–153
  50. Phenomenologically symmetrical local Lie groups of transformations of the space $R^s$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 7,  10–21
  51. Criterion for the Nondegeneracy of a Transformation Group

    Mat. Zametki, 85:1 (2009),  144–146
  52. Критерий невырожденности $sn(n+1)/2$-параметрической группы Ли преобразований пространства $\mathbb R^{sn}$

    Sib. Zh. Ind. Mat., 12:1 (2009),  109–113
  53. Some of Transformation Groups and Their Invarians

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:3 (2009),  54–63
  54. Projective geometry and the theory of physical structures

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 11,  48–59
  55. Classification of four-dimensional transitive local Lie groups of transformations of the space $R\sp 4$ and their two-point invariants

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 6,  29–42
  56. Affine Geometry as a Physical Structure

    J. Sib. Fed. Univ. Math. Phys., 1:4 (2008),  460–464
  57. On quasigroups arising from physical structure of $(2,2)$ rank

    Prikl. Diskr. Mat., 2008, no. 2(2),  12–14
  58. Three-basal quasigroup with generalized Word's identity

    Prikl. Diskr. Mat., 2008, no. 1(1),  21–24
  59. Two-metric spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 8,  27–38
  60. Two-dimensional Helmholtz spaces

    Sibirsk. Mat. Zh., 46:6 (2005),  1341–1359


© Steklov Math. Inst. of RAS, 2026