RUS  ENG
Full version
PEOPLE

Obnosov Yurii Viktorovich

Publications in Math-Net.Ru

  1. $\mathbb R$-linear conjugation problem for a confocal parabolic annulus

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:3 (2009),  170–178
  2. $\mathbb R$-linear Conjugation Problem for a Confocal Elliptical Annulas

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 150:4 (2008),  137–146
  3. A generalization of Milne-Thomson theorem for the case of annulus

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:4 (2006),  35–50
  4. Solution of a problem of a seepage fields distribution into infinite porous massif with two circular inclusions

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:2 (2006),  109–123
  5. Estimates for integral means of hyperbolically convex functions

    Sibirsk. Mat. Zh., 46:6 (2005),  1316–1323
  6. Solution of the $\mathbb R$-linear conjugation problem in the case of a hyperbolic line of separation of heterogeneous phases

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 7,  53–62
  7. Exact values of efficiency for Muskat well arrays

    Dokl. Akad. Nauk, 353:2 (1997),  193–195
  8. Solution of the $\mathbf R$-linear conjugation problem in the theory of composites for a three-component medium

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 5,  63–72
  9. Electric forces in a dielectric two-layer cylinder with nonconcentric arrangement of layers

    Prikl. Mekh. Tekh. Fiz., 37:1 (1996),  3–14
  10. Closed solution of a problem of $R$-linear conjugation for a regular triangular checkerboard field

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 8,  55–66
  11. Electric forces on a circular cylindrical inclusion at the surface separating two dielectrics

    Prikl. Mekh. Tekh. Fiz., 34:4 (1993),  14–24
  12. Solution of a problem of $\mathbf{R}$-linear conjugation for a regular triangular chess field

    Dokl. Akad. Nauk, 327:3 (1992),  326–330
  13. Solution of a boundary value problem of $\mathbb R$-linear conjugation with piecewise-constant coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 4,  39–48
  14. Solution of a problem of Markushevich in a class of doubly periodic functions with orthogonal periods

    Dokl. Akad. Nauk SSSR, 319:5 (1991),  1125–1127
  15. An accurately solvable problem of the mutual effect of inclusions in the theory of heterogeneous media

    Prikl. Mekh. Tekh. Fiz., 31:1 (1990),  21–29
  16. Exact solution of a problem on current formation in a doubly periodic heterogeneous system

    Dokl. Akad. Nauk SSSR, 309:2 (1989),  319–322
  17. Solution of a mixed boundary value problem for the theory of analytic functions

    Trudy Sem. Kraev. Zadacham, 19 (1983),  122–132
  18. Solution of a mixed boundary value problem of the theory of analytic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 10,  73–75
  19. On the solution of the linear Hilbert problem in a special case

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 9,  29–40
  20. The solution of the homogeneous Hilbert power problem with constant coefficient

    Trudy Sem. Kraev. Zadacham, 15 (1978),  99–107
  21. Solution of a certain nonlinear mixed boundary value problem of analytic function theory

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 6,  96–102
  22. On the solution of a nonlinear boundary value problem of Hilbert type. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 4,  42–51
  23. On the solution of a nonlinear boundary value problem of Hilbert type. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 3,  82–91
  24. A nonlinear boundary value problem of Hilbert type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 10,  42–49


© Steklov Math. Inst. of RAS, 2026