RUS  ENG
Full version
PEOPLE

Evtushik Leonid Evgen'evich

Publications in Math-Net.Ru

  1. Conformal mappings onto Einstein spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 10,  8–13
  2. A category-theoretic approach extending the notion of connection in a natural way, and its application to the geometry of differential systems

    Fundam. Prikl. Mat., 16:1 (2010),  55–63
  3. The mobility of Riemannian spaces with respect to conformal mappings onto Einstein spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 8,  36–41
  4. Cartan connections and Kawaguchi geometry of spaces obtained by the moving Frame method

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 30 (2002),  170–204
  5. Geometry of ordinary differential equations. Investigations of Laptev–Vasil'ev seminar at the Moscow University (1980–1992)

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 11 (2002),  24–81
  6. Non-Euclidean geometries based on higher-order ordinary differential systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 2,  86–98
  7. Clifford structure and Clifford differentiation on Riemannian spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 2,  67–74
  8. The influence of Lobachevskii's ideas on the development of differential geometry

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 2,  3–14
  9. Differential-algebraic methods for geometric investigations in the work of A. M. Vasil'ev and his scientific school

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 20 (1988),  3–34
  10. Invariant description of ordinary systems in terms of nonlinear connections

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 1,  21–32
  11. Differential-geometric structures on manifolds

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 9 (1979),  5–246
  12. Reductive Cartan connection associated with the space of $m$-spreads over the support elements of second order contact

    Tr. Geom. Semin., 8 (1975),  89–94
  13. Structures that can be defined by a system of higher order ordinary differential equations

    Tr. Geom. Sem., 6 (1974),  243–255
  14. Reductive Cartan connections, and the generalized affine-normalized Norden structures

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 5,  87–96
  15. The holonomy of nonlinear connections and connections in pseudogroup or homogeneous bundles

    Sibirsk. Mat. Zh., 14:3 (1973),  536–548
  16. Nonlinear $(n-1)^p$-connections in metric Cartan spaces of higher order

    Mat. Zametki, 11:4 (1972),  447–458
  17. Nonlinear $m^p$-connectivities in principal fibrations

    Mat. Zametki, 11:3 (1972),  341–351
  18. Nonlinear connections in higher order metric spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 1,  48–60
  19. Differential connections and infinitesimal transformations of a prolonged pseudogroup

    Tr. Geom. Sem., 2 (1969),  119–150
  20. Nonlinear connections of higher orders

    Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 2,  32–44
  21. On a construction of invariant forms and structural equations of infinite groups

    Dokl. Akad. Nauk SSSR, 146:1 (1962),  20–21
  22. Non-linear connections

    Uspekhi Mat. Nauk, 17:2(104) (1962),  195–197
  23. Lie derivative and differential equations of the field of a geometric object

    Dokl. Akad. Nauk SSSR, 132:5 (1960),  998–1001
  24. On the geometry of a double integral

    Mat. Sb. (N.S.), 37(79):1 (1955),  197–208

  25. German Fedorovich Laptev (on the occasion of the 80th anniversary of his birth)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 6,  88–90
  26. In memory of Anatolii Mikhailovich Vasil'ev (1923–1987)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 5,  97–100


© Steklov Math. Inst. of RAS, 2026