RUS  ENG
Full version
PEOPLE

Kovalev Valerii Leonidovich

Publications in Math-Net.Ru

  1. Nucleation of dislocations in aluminum alloys with copper

    Fizika Tverdogo Tela, 57:9 (2015),  1761–1771
  2. Separation of gas mixtures in free molecular flow through a vibrating membrane

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 5,  64–67
  3. Simulation of oxygen diffusion in pores in the case of catalytic oxidation reactions of coal

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 4,  58–60
  4. Simulation of self-ignition of aviation kerosene by a shock wave

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 2,  69–71
  5. Modeling of catalytic activity of an $\mathrm{Al}_2\mathrm{O}_3$ surface on the basis of the first principles

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 1,  38–44
  6. Моделирование структуры поверхности NaCl в вакууме и в атмосфере молекулярного водорода

    Chebyshevskii Sb., 12:3 (2011),  113–127
  7. Simulation of oxygen atom adsorption on an $\mathrm{Al}_2\mathrm{O}_3$ surface by the density functional method

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 4,  58–62
  8. Analysis of catalytic properties of siliconized heat-shielding coatings

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 2,  44–49
  9. A study of flow and heat transfer in micro- and nanochannels by the methods of molecular dynamics

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 5,  67–70
  10. Simulation of interaction between a rarefied gas jet and an obstacle by the methods of molecular dynamics

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 2,  57–59
  11. Dynamic Monte Carlo simulation of surface recombination

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 2,  67–72
  12. Effect of heterogeneous recombination on heat flows on the zirconium nozzle surface of a hydrogen engine

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 5,  68–72
  13. Experimental and theoretical modelling of incomplete energy accommodation of heterogeneous recombination in a diffusion-calorimetric unit

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 3,  32–38
  14. Effect on nitrogen oxide formation in heterogeneous catalytic reactions on heat fluxes directed to a surface of reusable space vehicles

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 1,  30–36
  15. Use of low-catalytic coatings on the lee surface of a vehicle entering the Martian atmosphere

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2003, no. 6,  18–22
  16. Catalytical surface boundary conditions for Martian atmospheric entry

    Fundam. Prikl. Mat., 8:1 (2002),  61–69
  17. The influence of physical adsorption of atoms on heat fluxes directed toward catalytic surfaces of high-temperature thermal protection materials in dissociated carbon dioxide mixtures

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 1,  45–51
  18. Models of heterogeneous recombination on heat-shielding coatings of space vehicles entering the Martian atmosphere (the case of finite-rate adsorption of oxygen atoms)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 3,  40–45
  19. Some details of modeling of heat transfer with catalytic surfaces in the re-enter atmosphere problem

    Fundam. Prikl. Mat., 6:2 (2000),  433–439
  20. Heat exchage with catalytic surface of cosmic apparatus heat protection incoming in Mars atmosphere

    Mat. Model., 12:7 (2000),  79–86
  21. Effect of catalytic properties on high-temperature heat-protected surface covers in problems of Martian atmospheric entry

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 6,  37–44
  22. Modeling of catalytic properties of reusable heat-reflecting coatings on entering the Mars atmosphere

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 1,  37–43
  23. Peculiarities of modeling of heat transfer with catalytic surfaces during body entering into the Earth atmosphere

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5,  64–67
  24. Comparison of phenomenological catalytic activity for high-temperature reusable surface insulation

    Fundam. Prikl. Mat., 2:4 (1996),  1213–1225
  25. Numerical investigation of an inviscid flow in a shock layer near blunt bodies by the global iteration method

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 4,  85–90
  26. Numerical modelling of chemically non-equilibrium flow of partially ionized air in a viscous shock layer

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 2,  54–59
  27. Asymptotic formulas for investigation of heatmasstransfer in non-equilibrium boundary layer on catalytic surface

    Dokl. Akad. Nauk, 345:4 (1995),  483–486
  28. Diffusion processes simulation for chemically not in equilibrium flow by catalytic surface

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 1,  86–89
  29. Method of global iterations for solving problems of ideal-gas hypersonic flow past blunt bodies

    Dokl. Akad. Nauk, 339:3 (1994),  342–345
  30. Solution to equations for the viscous shock layer by the method of simple global iterations over the pressure gradient and shock-wave shape

    Dokl. Akad. Nauk, 338:3 (1994),  333–336
  31. Numerical study of turbulent flow of partly ionized air in a viscous shock layer

    Prikl. Mekh. Tekh. Fiz., 35:5 (1994),  27–32
  32. A numerical method for solving equations of a multicomponent turbulent viscous shock layer on a catalytic surface

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 3,  66–74
  33. On some unsteady processes in railgun

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 3,  96–98
  34. Numerical investigation of unsteady motion of plasma and an accelerated body in the channel of a railgun

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 5,  59–64

  35. Artur Yakovlevich Sagomonyan centenary (1914–2001)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 6,  69–70


© Steklov Math. Inst. of RAS, 2026