RUS  ENG
Full version
PEOPLE

Vasilenko Oleg Nikolaevich

Publications in Math-Net.Ru

  1. Point multiplication on elliptic curves over finite fields using many-base number systems and new types of coordinates

    Mat. Vopr. Kriptogr., 2:1 (2011),  5–28
  2. On, algorithmic constructions of isogenies of elliptic curves over finite fields and their applications

    Mat. Vopr. Kriptogr., 1:1 (2010),  7–22
  3. New methods of computing the multipe of a point on an elliptic curve over finite field

    Tr. Diskr. Mat., 11:2 (2008),  5–30
  4. On the computation of Weil and Tate pairings

    Tr. Diskr. Mat., 10 (2007),  18–46
  5. On the computation of the order of the elliptic curve group over finite field

    Tr. Diskr. Mat., 9 (2006),  32–50
  6. Some identities for trigomometrical Gauss sums and their applications

    Tr. Diskr. Mat., 8 (2004),  69–78
  7. On some properties of prime factorisations of integers

    Tr. Diskr. Mat., 7 (2003),  22–30
  8. On the solvability of the discrete logarithm problem in residue classes

    Fundam. Prikl. Mat., 8:3 (2002),  647–653
  9. Application of the method of trigonometric sums for primality testing of integers

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 5,  49–51
  10. On discrete logarithmization in some groups

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 5,  53–55
  11. The Miller–Rabin algorithm

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 2,  41–42
  12. On some properties of Fermat numbers

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5,  56–58
  13. Some algorithms for constructing large prime numbers

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 5,  62–64
  14. On the approximation of differences of dilogarithms and their values at rational points

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 1,  10–12
  15. On a construction of Diophantine approximations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 5,  14–17
  16. On a relationship between approximation of exponentials and approximation of $\psi$-functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 3,  57–58
  17. Linear independence of values of certain hypergeometric functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 5,  34–37
  18. Irrationality of the values of the Gauss hypergeometric function

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 3,  15–18
  19. Arithmetic properties of values of polylogarithms

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 1,  42–45


© Steklov Math. Inst. of RAS, 2026