RUS  ENG
Full version
PEOPLE

Tabarintseva Elena Vladimirovna

Publications in Math-Net.Ru

  1. The accuracy of the approximate solutions to a boundary value inverse problem with final overdetermination

    J. Comp. Eng. Math., 12:2 (2025),  38–50
  2. Solving an ill-posed problem for a nonlinear differential equation by means of the projection regularization method

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 16:2 (2024),  59–71
  3. On the estimate of accuracy of the auxiliary boundary conditions method for solving a boundary value inverse problem for a nonlinear equation

    Sib. Zh. Vychisl. Mat., 21:3 (2018),  293–313
  4. On methods to solve an inverse problems for a nonlinear differential equation

    Sib. Èlektron. Mat. Izv., 14 (2017),  199–209
  5. An approach to solving an ill-posed problem for a nonlinear differential equation

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  231–237
  6. On an estimate for the modulus of continuity of a nonlinear inverse problem

    Ural Math. J., 1:1 (2015),  87–92
  7. On an estimate for the modulus of continuity of a nonlinear inverse problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013),  253–257
  8. About solving of an ill-posed problem for a nonlinear differential equation by means of the projection regularization method

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:2 (2013),  65–71
  9. On Error Estimate of an Approximate Method to Solve an Inverse Problem for a Semi-Linear Differential Equation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:3 (2013),  85–94
  10. On solving an inverse boundary problem for a parabolic equation by the quasi-revesibility method

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2012, no. 6,  8–13
  11. About solution of the boundary inverse problem for a parabolic equation by means of subsidiary boundary conditions method

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2011, no. 5,  68–76
  12. About solving one boundary inverse problem for parabolic equation

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2010, no. 3,  21–28
  13. On a method to approximate discontinuous solutions of nonlinear inverse problems

    Sib. Zh. Vychisl. Mat., 10:2 (2007),  221–228
  14. On an approximation method of a discontinuous solution of an ill-posed problem

    Sib. Zh. Ind. Mat., 8:1 (2005),  129–142
  15. On error estimation for the quasi-inversion method for solving a semi-linear ill-posed problem

    Sib. Zh. Vychisl. Mat., 8:3 (2005),  259–271
  16. Метод Карассо с выбором параметра регуляризации по принципу невязки

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 7,  119–126
  17. On solution of an ill-posed problem for a semilinear differential equation

    Sib. Zh. Vychisl. Mat., 5:2 (2002),  189–198
  18. A new approach to the regularization of ill-posed problems

    Dokl. Akad. Nauk, 335:5 (1994),  565–566

  19. Leonid Menikhes (to the $65^{th}$ anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:3 (2013),  136–140


© Steklov Math. Inst. of RAS, 2026