RUS  ENG
Full version
PEOPLE

Konovalova Dina Sergeevna

Publications in Math-Net.Ru

  1. New formulas for the inversion of the Radon transform

    Dokl. RAN. Math. Inf. Proc. Upr., 523 (2025),  10–14
  2. Nonclassical problem for transverse vibrations of a string system

    Sib. Zh. Ind. Mat., 28:1 (2025),  15–25
  3. Inversion problem for Radon transforms defined on pseudoconvex sets

    Dokl. RAN. Math. Inf. Proc. Upr., 516 (2024),  93–97
  4. The problem of an unknown boundary for generalized Radon transforms in even-dimensional space

    Mat. Tr., 27:3 (2024),  5–19
  5. Radon transform inversion formula in the class of discontinuous functions

    Sib. Zh. Ind. Mat., 27:3 (2024),  5–11
  6. Inversion of Radon transformation for discontinuous functions in unbounded sets

    Vladikavkaz. Mat. Zh., 26:4 (2024),  21–27
  7. Formula for solving a mixed problem for a hyperbolic equation

    Vladikavkaz. Mat. Zh., 25:2 (2023),  5–13
  8. Formula of Kirchhoff type for mixed problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 6,  3–10
  9. Cauchy problem for a differential equation with piecewise smooth characteristics

    Sib. J. Pure and Appl. Math., 18:3 (2018),  3–19
  10. Forward and inverse problems with discontinuous coefficient

    Sib. J. Pure and Appl. Math., 18:2 (2018),  13–29
  11. Localization for the discontinuity line of the right-hand side of a differential equation

    Sib. Zh. Ind. Mat., 19:1 (2016),  62–72
  12. An integral geometry underdetermined problem for a family of curves

    Sibirsk. Mat. Zh., 56:2 (2015),  265–281
  13. An inverse problem of location type for a hyperbolic system

    Sib. Zh. Ind. Mat., 16:4 (2013),  3–20
  14. Differential properties of a generalized solution to a hyperbolic system of first-order differential equations

    Sib. Zh. Ind. Mat., 16:2 (2013),  26–39
  15. The integral geometry boundary determination problem for a pencil of straight lines

    Sibirsk. Mat. Zh., 52:5 (2011),  962–976
  16. Stepwise solution to an inverse problem for the radiative transfer equation as applied to tomography

    Zh. Vychisl. Mat. Mat. Fiz., 49:1 (2009),  189–199
  17. Radiation Tomography and transport equation

    Dal'nevost. Mat. Zh., 8:1 (2008),  5–18
  18. Generalized Radon Transform and X-ray Tomography

    Sib. Èlektron. Mat. Izv., 5 (2008),  440–447
  19. Численная реализация алгоритма поэтапной реконструкции для задачи рентгеновской томографии

    Sib. Zh. Ind. Mat., 11:4 (2008),  61–65
  20. Some properties of solutions of the transport equation

    Differ. Uravn., 42:5 (2006),  684–689
  21. A method for approximating the visibility measure in X-ray tomography

    Sib. Zh. Ind. Mat., 8:1 (2005),  64–69
  22. The boundary-value problem for the transport equation with purely compton scattering

    Sibirsk. Mat. Zh., 46:1 (2005),  3–16
  23. The maximum principle for the transport equation in the case of Compton scattering

    Zh. Vychisl. Mat. Mat. Fiz., 45:7 (2005),  1226–1236
  24. The kinetic transport equation in the case of Compton scattering

    Sibirsk. Mat. Zh., 43:5 (2002),  987–1001
  25. Subdifferential boundary value problems for the nonstationary Navier–Stokes equations

    Differ. Uravn., 36:6 (2000),  792–798
  26. Optimal starting control of viscous gas flows

    Zh. Vychisl. Mat. Mat. Fiz., 40:3 (2000),  451–472


© Steklov Math. Inst. of RAS, 2026