|
|
Publications in Math-Net.Ru
-
Algorithm for numerical study of degenerate models of nonlinear diffusion and filtration with a random initial state
J. Comp. Eng. Math., 12:1 (2025), 23–35
-
Investigation of the uniqueness solution of the Showalter–Sidorov problem for the mathematical Hoff model. Phase space morphology
Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:1 (2024), 49–63
-
Numerical investigation of the non-uniqueness of solutions of the Showalter–Sidorov problem for the Hoff mathematical model on a rectangle
J. Comp. Eng. Math., 10:2 (2023), 26–41
-
Investigation of boundary control and final observation in mathematical model of motion speed potentials distribution of filtered liquid free surface
Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:2 (2023), 111–116
-
Numerical algorithm for finding a solution to a nonlinear filtration mathematical model with a random Showalter–Sidorov initial condition
J. Comp. Eng. Math., 9:2 (2022), 39–51
-
Study of the objectives of boundary control and final observation for the mathematical model of non-linear filtration
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:4 (2022), 28–33
-
Development of the theory of optimal dynamic measurement
Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022), 19–33
-
Semilinear models of sobolev type. Non-uniqueness of solution to the Showalter–Sidorov problem
Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022), 84–100
-
Reconstruction of a dynamically distorted signal based on the theory of optimal dynamic measurements
Avtomat. i Telemekh., 2021, no. 12, 125–137
-
Numerical optimal measurement algorithm under distortions caused by inertia, resonances, and sensor degradation
Avtomat. i Telemekh., 2021, no. 1, 55–67
-
Investigation of various types of control problems for one nonlinear model of filtration
J. Comp. Eng. Math., 8:4 (2021), 45–61
-
Numerical simulation of start control and final observation in fluid filtration model
J. Comp. Eng. Math., 8:1 (2021), 29–45
-
Research of the optimal control problem for one mathematical model of the Sobolev type
Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:4 (2021), 36–45
-
The optimal measurements theory as a new paradigm in the metrology
J. Comp. Eng. Math., 7:1 (2020), 3–23
-
Positive solutions to Sobolev type equations with relatively $p$-sectorial operators
Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:2 (2020), 17–32
-
Optimal control in linear Sobolev type mathematical models
Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:1 (2020), 5–27
-
Research of one mathematical model of the distribution of potentials in a crystalline semiconductor
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019), 150–157
-
About nonuniqueness of solutions of the Showalter–Sidorov problem for one mathematical model of nerve impulse spread in membrane
Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018), 161–168
-
Numerical investigation for the start control and final observation problem in model of an I-beam deformation
J. Comp. Eng. Math., 4:2 (2017), 26–40
-
Some mathematical models with a relatively bounded operator and additive “white noise” in spaces of sequences
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017), 5–14
-
On modified method of multistep coordinate descent for optimal control problem for semilinear Sobolev-type model
J. Comp. Eng. Math., 3:4 (2016), 59–72
-
The Barenblatt – Zheltov – Kochina model with additive white noise in quasi-Sobolev spaces
J. Comp. Eng. Math., 3:1 (2016), 61–67
-
Nonclassical equations of mathematical physics. Phase space of semilinear Sobolev type equations
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 31–51
-
Numerical simulation of the process of nonequilibrium counterflow capillary imbibition
Zh. Vychisl. Mat. Mat. Fiz., 56:1 (2016), 125–132
-
Algorithm for numerical method of solution of the optimal control problem for semilinear Sobolev type models on basis of decomposition method
J. Comp. Eng. Math., 2:3 (2015), 43–59
-
Numerical investigation of the Showalter–Sidorov problem for nonlinear diffusion equation
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 10(132), 24–28
-
Numerical investigation of the generalized Hoff model
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 6(128), 93–97
-
The optimal control problem for the model of dynamics of weakly viscoelastic fluid
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:3 (2015), 22–29
-
Optimal control for a mathematical model of nerve impulse spreading
Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015), 120–126
-
Mathematical models and optimal control of the filtration and deformation processes
Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:3 (2015), 5–24
-
Method of decomposition in the optimal control problem for semilinear Sobolev type models
Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015), 133–137
-
On a Solution of the Dirichlet–Cauchy Problem for the Barenblatt–Gilman Equation
Bulletin of Irkutsk State University. Series Mathematics, 7 (2014), 52–60
-
An optimal control to solutions of the Showalter – Sidorov problem for the Hoff model on the geometrical graph
J. Comp. Eng. Math., 1:1 (2014), 26–33
-
The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noise”
Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:1 (2014), 90–103
-
Optimal Control of the Solutions of the Initial-Finish Problem for the Linear Hoff Model
Mat. Zametki, 94:2 (2013), 225–236
-
On a hyposithis of G. A. Sviridyuk
Bulletin of Irkutsk State University. Series Mathematics, 4:4 (2011), 87–93
-
On one optimal control problem with a penalty functional in general form
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(25) (2011), 18–24
-
Optimal control of solutions of initial-finish problem for the linear Sobolev type equations
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8, 113–114
-
Optimal control to solutions of the Showalter–Sidorov problem for a Sobolev type equation
Bulletin of Irkutsk State University. Series Mathematics, 3:1 (2010), 42–53
-
An optimal control problem for the Hoff equation
Sib. Zh. Ind. Mat., 8:2 (2005), 144–151
-
The phase space of the Cauchy–Dirichlet problem for the Oskolkov equation of nonlinear filtration
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 9, 36–41
-
Regular Perturbations of a Class of Sobolev Type Linear Equations
Differ. Uravn., 38:3 (2002), 423–425
-
Alexander Leonidovich Shestakov (to Anniversary Since Birth)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022), 142–146
-
Ãåîðãèé Àíàòîëüåâè÷ Ñâèðèäþê
(ê þáèëåþ)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022), 123–127
-
Prof. Hristo Kirilov Radev, DSc. (November 15, 1940 – June 09, 2020)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020), 122–123
-
Tamara Gennadievna Sukacheva (on anniversary)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:2 (2020), 151–153
-
Jacek Banasiak (on 60th birthday)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019), 172–174
-
Yu.I. Sapronov. To the memory of mathematician, teacher and friend
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 166–168
-
To the 70th anniversary of professor Yu.E. Gliklikh
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 163–165
-
To the 70th anniversary of professor V. F. Chistyakov
Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018), 169–176
-
To the 65th anniversary of professor G. A. Sviridyuk
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017), 155–158
-
Sergey Grigorievich Pyatkov (to the 60th anniversary)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:2 (2016), 139–144
-
Leonid Menikhes (to the $65^{th}$ anniversary)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:3 (2013), 136–140
-
Alexander Drozin (to the 60$^{th}$ anniversary)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8, 115–120
© , 2026