RUS  ENG
Full version
PEOPLE

Manakova Natalia Aleksandrovna

Publications in Math-Net.Ru

  1. Algorithm for numerical study of degenerate models of nonlinear diffusion and filtration with a random initial state

    J. Comp. Eng. Math., 12:1 (2025),  23–35
  2. Investigation of the uniqueness solution of the Showalter–Sidorov problem for the mathematical Hoff model. Phase space morphology

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:1 (2024),  49–63
  3. Numerical investigation of the non-uniqueness of solutions of the Showalter–Sidorov problem for the Hoff mathematical model on a rectangle

    J. Comp. Eng. Math., 10:2 (2023),  26–41
  4. Investigation of boundary control and final observation in mathematical model of motion speed potentials distribution of filtered liquid free surface

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:2 (2023),  111–116
  5. Numerical algorithm for finding a solution to a nonlinear filtration mathematical model with a random Showalter–Sidorov initial condition

    J. Comp. Eng. Math., 9:2 (2022),  39–51
  6. Study of the objectives of boundary control and final observation for the mathematical model of non-linear filtration

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:4 (2022),  28–33
  7. Development of the theory of optimal dynamic measurement

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  19–33
  8. Semilinear models of sobolev type. Non-uniqueness of solution to the Showalter–Sidorov problem

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  84–100
  9. Reconstruction of a dynamically distorted signal based on the theory of optimal dynamic measurements

    Avtomat. i Telemekh., 2021, no. 12,  125–137
  10. Numerical optimal measurement algorithm under distortions caused by inertia, resonances, and sensor degradation

    Avtomat. i Telemekh., 2021, no. 1,  55–67
  11. Investigation of various types of control problems for one nonlinear model of filtration

    J. Comp. Eng. Math., 8:4 (2021),  45–61
  12. Numerical simulation of start control and final observation in fluid filtration model

    J. Comp. Eng. Math., 8:1 (2021),  29–45
  13. Research of the optimal control problem for one mathematical model of the Sobolev type

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:4 (2021),  36–45
  14. The optimal measurements theory as a new paradigm in the metrology

    J. Comp. Eng. Math., 7:1 (2020),  3–23
  15. Positive solutions to Sobolev type equations with relatively $p$-sectorial operators

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:2 (2020),  17–32
  16. Optimal control in linear Sobolev type mathematical models

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:1 (2020),  5–27
  17. Research of one mathematical model of the distribution of potentials in a crystalline semiconductor

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019),  150–157
  18. About nonuniqueness of solutions of the Showalter–Sidorov problem for one mathematical model of nerve impulse spread in membrane

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018),  161–168
  19. Numerical investigation for the start control and final observation problem in model of an I-beam deformation

    J. Comp. Eng. Math., 4:2 (2017),  26–40
  20. Some mathematical models with a relatively bounded operator and additive “white noise” in spaces of sequences

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017),  5–14
  21. On modified method of multistep coordinate descent for optimal control problem for semilinear Sobolev-type model

    J. Comp. Eng. Math., 3:4 (2016),  59–72
  22. The Barenblatt – Zheltov – Kochina model with additive white noise in quasi-Sobolev spaces

    J. Comp. Eng. Math., 3:1 (2016),  61–67
  23. Nonclassical equations of mathematical physics. Phase space of semilinear Sobolev type equations

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016),  31–51
  24. Numerical simulation of the process of nonequilibrium counterflow capillary imbibition

    Zh. Vychisl. Mat. Mat. Fiz., 56:1 (2016),  125–132
  25. Algorithm for numerical method of solution of the optimal control problem for semilinear Sobolev type models on basis of decomposition method

    J. Comp. Eng. Math., 2:3 (2015),  43–59
  26. Numerical investigation of the Showalter–Sidorov problem for nonlinear diffusion equation

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 10(132),  24–28
  27. Numerical investigation of the generalized Hoff model

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 6(128),  93–97
  28. The optimal control problem for the model of dynamics of weakly viscoelastic fluid

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:3 (2015),  22–29
  29. Optimal control for a mathematical model of nerve impulse spreading

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015),  120–126
  30. Mathematical models and optimal control of the filtration and deformation processes

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:3 (2015),  5–24
  31. Method of decomposition in the optimal control problem for semilinear Sobolev type models

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015),  133–137
  32. On a Solution of the Dirichlet–Cauchy Problem for the Barenblatt–Gilman Equation

    Bulletin of Irkutsk State University. Series Mathematics, 7 (2014),  52–60
  33. An optimal control to solutions of the Showalter – Sidorov problem for the Hoff model on the geometrical graph

    J. Comp. Eng. Math., 1:1 (2014),  26–33
  34. The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noise”

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:1 (2014),  90–103
  35. Optimal Control of the Solutions of the Initial-Finish Problem for the Linear Hoff Model

    Mat. Zametki, 94:2 (2013),  225–236
  36. On a hyposithis of G. A. Sviridyuk

    Bulletin of Irkutsk State University. Series Mathematics, 4:4 (2011),  87–93
  37. On one optimal control problem with a penalty functional in general form

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(25) (2011),  18–24
  38. Optimal control of solutions of initial-finish problem for the linear Sobolev type equations

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8,  113–114
  39. Optimal control to solutions of the Showalter–Sidorov problem for a Sobolev type equation

    Bulletin of Irkutsk State University. Series Mathematics, 3:1 (2010),  42–53
  40. An optimal control problem for the Hoff equation

    Sib. Zh. Ind. Mat., 8:2 (2005),  144–151
  41. The phase space of the Cauchy–Dirichlet problem for the Oskolkov equation of nonlinear filtration

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 9,  36–41
  42. Regular Perturbations of a Class of Sobolev Type Linear Equations

    Differ. Uravn., 38:3 (2002),  423–425

  43. Alexander Leonidovich Shestakov (to Anniversary Since Birth)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  142–146
  44. Ãåîðãèé Àíàòîëüåâè÷ Ñâèðèäþê (ê þáèëåþ)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  123–127
  45. Prof. Hristo Kirilov Radev, DSc. (November 15, 1940 – June 09, 2020)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  122–123
  46. Tamara Gennadievna Sukacheva (on anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:2 (2020),  151–153
  47. Jacek Banasiak (on 60th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019),  172–174
  48. Yu.I. Sapronov. To the memory of mathematician, teacher and friend

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019),  166–168
  49. To the 70th anniversary of professor Yu.E. Gliklikh

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019),  163–165
  50. To the 70th anniversary of professor V. F. Chistyakov

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018),  169–176
  51. To the 65th anniversary of professor G. A. Sviridyuk

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017),  155–158
  52. Sergey Grigorievich Pyatkov (to the 60th anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:2 (2016),  139–144
  53. Leonid Menikhes (to the $65^{th}$ anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:3 (2013),  136–140
  54. Alexander Drozin (to the 60$^{th}$ anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8,  115–120


© Steklov Math. Inst. of RAS, 2026