RUS  ENG
Full version
PEOPLE

Durdiev Durdimurod Kalandarovich

Publications in Math-Net.Ru

  1. Inverse problems for the fractional diffusion equation with the Hilfer operator

    Izv. Vyssh. Uchebn. Zaved. Mat., 2026, no. 1,  3–17
  2. Numerical solution of the problem of finding two unknowns in time-fractional diffusion equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 7,  36–52
  3. Problem of determining a multidimensional kernel in a diffusion-wave equation with a fractional time derivative

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 7,  20–35
  4. Coefficient inverse problem for the advection-dispersion equation with fractional derivatives

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 4,  3–20
  5. An inverse coefficient problem for the fractional telegraph equation with the corresponding fractional derivative in time

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 2,  39–52
  6. Global solvability of a kernel determination problem in 2D heat equation with memory

    J. Sib. Fed. Univ. Math. Phys., 18:1 (2025),  14–24
  7. Solvability of a coefficient recovery problem for a time-fractional diffusion equation with periodic boundary and overdetermination conditions

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:1 (2025),  21–36
  8. Inverse kernel determination problem for a class of pseudo-parabolic integro-differential equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:1 (2025),  7–20
  9. Coefficient inverse problem for an equation of mixed parabolic-hyperbolic type with nonlocal conditions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 10,  34–44
  10. Coefficient inverse problem for an equation of mixed parabolic-hyperbolic type with a non-characteristic line of type change

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3,  38–49
  11. Inverse problem for a hyperbolic integro-differential equation in a bounded domain

    Mat. Tr., 27:1 (2024),  139–162
  12. Unknown coefficient problem for mixed equation of parabolic-hyperbolic type with non-local boundary conditions on characteristics

    Ufimsk. Mat. Zh., 16:2 (2024),  82–88
  13. Kernel determination problem in the third order 1D Moore–Gibson–Thompson equation with memory

    Vladikavkaz. Mat. Zh., 26:4 (2024),  55–65
  14. Inverse coefficient problem for the 2D wave equation with initial and nonlocal boundary conditions

    Vladikavkaz. Mat. Zh., 26:2 (2024),  5–25
  15. Inverse coefficient problem for a partial differential equation with multi-term orders fractional Riemann–Liouville derivatives

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:3 (2024),  321–338
  16. The problem of finding the kernels in the system of integro-differential acoustics equations

    Dal'nevost. Mat. Zh., 23:2 (2023),  190–210
  17. The problem of determining kernels in a two-dimensional system of viscoelasticity equations

    Bulletin of Irkutsk State University. Series Mathematics, 43 (2023),  31–47
  18. Convolution kernel determination problem in the third order Moore–Gibson–Thompson equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12,  3–16
  19. Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 11,  3–14
  20. Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 10,  22–35
  21. Inverse Problem for an Integrodifferential Equation of the Hyperbolic Type protect in a Rectangular Domain

    Mat. Zametki, 114:2 (2023),  244–259
  22. Inverse problem on determining two kernels in integro-differential equation of heat flow

    Ufimsk. Mat. Zh., 15:2 (2023),  120–135
  23. Kernel determination problem for one parabolic equation with memory

    Ural Math. J., 9:2 (2023),  86–98
  24. Inverse problem for an equation of mixed parabolic-hyperbolic type with a characteristic line of change

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:4 (2023),  607–620
  25. Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:4 (2023),  581–600
  26. Letter to the Editor: Correction to the “Kernel determination problem in an integro-differential equation of parabolic type with nonlocal condition” [Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2023, vol. 33, issue 1, pp. 90-102]

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:2 (2023),  382–384
  27. Kernel determination problem in an integro-differential equation of parabolic type with nonlocal condition

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:1 (2023),  90–102
  28. Determination of non-stationary potential analytical with respect to spatial variables

    J. Sib. Fed. Univ. Math. Phys., 15:5 (2022),  565–576
  29. Determination of a non-stationary adsorption coefficient analytical in part of spatial variables

    Mat. Tr., 25:2 (2022),  88–106
  30. Inverse problem for an equation of mixed parabolic-hyperbolic type with a Bessel operator

    Sib. Zh. Ind. Mat., 25:3 (2022),  14–24
  31. 2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity

    Sib. Zh. Ind. Mat., 25:1 (2022),  14–38
  32. Inverse problem for viscoelastic system in a vertically layered medium

    Vladikavkaz. Mat. Zh., 24:4 (2022),  30–47
  33. Inverse source problem for an equation of mixed parabolic-hyperbolic type with the time fractional derivative in a cylindrical domain

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:2 (2022),  355–367
  34. The problem of determining the memory of an environment with weak horizontal heterogeneity

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:3 (2022),  383–402
  35. Fractional powers of Bessel operator and its numerical calculation

    Chelyab. Fiz.-Mat. Zh., 6:2 (2021),  172–189
  36. Determination of a multidimensional kernel in some parabolic integro–differential equation

    J. Sib. Fed. Univ. Math. Phys., 14:1 (2021),  117–127
  37. The problem of finding the kernels in the system of integro-differential Maxwell's equations

    Sib. Zh. Ind. Mat., 24:2 (2021),  38–61
  38. About global solvability of a multidimensional inverse problem for an equation with memory

    Sibirsk. Mat. Zh., 62:2 (2021),  269–285
  39. Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives

    Sib. Èlektron. Mat. Izv., 17 (2020),  1106–1127
  40. The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium

    Sib. Zh. Ind. Mat., 23:2 (2020),  63–80
  41. On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020),  572–584
  42. The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation

    Mat. Zametki, 103:1 (2018),  129–146
  43. Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability

    TMF, 195:3 (2018),  491–506
  44. The problem of determining the one-dimensional kernel of the electroviscoelasticity equation

    Sibirsk. Mat. Zh., 58:3 (2017),  553–572
  45. The problem of kernel determination from viscoelasticity system integro-differential equations for homogeneous anisotropic media

    Nanosystems: Physics, Chemistry, Mathematics, 7:3 (2016),  405–409
  46. Inverse Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation in a Bounded Domain

    Mat. Zametki, 97:6 (2015),  855–867
  47. Inverse problem for the identification of a memory kernel from Maxwell's system integro-differential equations for a homogeneous anisotropic media

    Nanosystems: Physics, Chemistry, Mathematics, 6:2 (2015),  268–273
  48. The problem of determining the multidimensional kernel of viscoelasticity equation

    Vladikavkaz. Mat. Zh., 17:4 (2015),  18–43
  49. On the uniqueness of kernel determination in the integro-differential equation of parabolic type

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015),  658–666
  50. A problem of determining the kernel of integrodifferential wave equation with weak horizontal properties

    Dal'nevost. Mat. Zh., 13:2 (2013),  209–221
  51. The problem of determining the one-dimensional kernel of the viscoelasticity equation

    Sib. Zh. Ind. Mat., 16:2 (2013),  72–82
  52. The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro-differential equation of hyperbolic type

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(29) (2012),  37–47
  53. An Identification Problem of Memory Function of a Medium and the Form of an Impulse Source

    J. Sib. Fed. Univ. Math. Phys., 2:2 (2009),  127–136
  54. The Problem of Determining a Function of the Memory of a Medium and of the Regular Part of a Pulsed Source

    Mat. Zametki, 86:2 (2009),  202–212
  55. An Inverse Problem for Determining Two Coefficients in an Integrodifferential Wave Equation

    Sib. Zh. Ind. Mat., 12:3 (2009),  28–40
  56. Global solvability of two unknown variables identification problem in one inverse problem for the integro-differential wave equation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(19) (2009),  17–28
  57. Problem of determining the nonstationary potential in a hyperbolic-type equation

    TMF, 156:2 (2008),  220–225
  58. Some multidimensional inverse problems of memory determination in hyperbolic equations

    Zh. Mat. Fiz. Anal. Geom., 3:4 (2007),  411–423
  59. A multidimensional inverse problem for an equation with memory

    Sibirsk. Mat. Zh., 35:3 (1994),  574–582
  60. On the ill-posedness of an inverse problem for a hyperbolic integro-differential equation

    Sibirsk. Mat. Zh., 33:3 (1992),  69–77


© Steklov Math. Inst. of RAS, 2026