RUS  ENG
Full version
PEOPLE

Vinogradova Polina Vital'evna

Publications in Math-Net.Ru

  1. Asymptotic estimate of a Petrov–Galerkin method for nonlinear operator-differential equation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:4 (2016),  17–29
  2. One projection method for linear equation of third order

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 11,  26–32
  3. Galerkin – Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary

    Computer Research and Modeling, 5:1 (2013),  3–10
  4. A projection method for a third-order operator differential equation with a nonlinear monotone operator

    Sib. Zh. Ind. Mat., 15:4 (2012),  64–70
  5. Projection and projection-difference methods for the solution of the Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011),  898–912
  6. Error estimates for projection-difference methods for differential equations with differentiable operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 7,  3–15
  7. On a numerical method for solving the Cauchy problem for an operator differential equation

    Sib. Zh. Ind. Mat., 13:1 (2010),  34–45
  8. Error estimates for the Galerkin method as applied to time-dependent equations

    Zh. Vychisl. Mat. Mat. Fiz., 49:9 (2009),  1643–1651
  9. Оценка погрешности проекционно–разностного метода для линейного дифференциально–операторного уравнения

    Matem. Mod. Kraev. Zadachi, 3 (2007),  53–55
  10. On the rate of convergence of Rothe's method for a system of Burgers equations in a noncylindrical domain

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 4,  12–19
  11. On a three-layer scheme for a parabolic equation in a domain with a moving boundary

    Sib. Zh. Ind. Mat., 9:2 (2006),  12–19
  12. On the convergence velocity of Rothe's method for parabolic equation in noncylindric domain

    Dal'nevost. Mat. Zh., 5:1 (2004),  5–11
  13. On the method of Galerkin for the quasilinear parabolic equations in noncylindric domain

    Dal'nevost. Mat. Zh., 3:1 (2002),  3–17


© Steklov Math. Inst. of RAS, 2026