RUS  ENG
Full version
PEOPLE

Osmolovskii Victor Georgievich

Publications in Math-Net.Ru

  1. A survey of results of St.Petersburg State University research school on nonlinear partial differential equations I

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 11:1 (2024),  3–37
  2. A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules

    Zap. Nauchn. Sem. POMI, 536 (2024),  228–246
  3. Comparision of properties of solutions of variational problems of the theory of two-phase elastic bodies in model and traditional formulations

    Zap. Nauchn. Sem. POMI, 519 (2022),  188–204
  4. One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature

    Zap. Nauchn. Sem. POMI, 508 (2021),  134–146
  5. Behavior of the solutions for one-sides varittional problems in two-phase continuum mechanics for a big temperature

    Funktsional. Anal. i Prilozhen., 53:4 (2019),  38–51
  6. Mathematical problems in the theory of phase transitions in continuum mechanics

    Algebra i Analiz, 29:5 (2017),  111–178
  7. The volume fraction of one of the phases in equilibrium two-phase elastic medium

    Zap. Nauchn. Sem. POMI, 459 (2017),  66–82
  8. A variational problem of phase transitions for a two-phase elastic medium with zero coefficient of surface tension

    Algebra i Analiz, 22:6 (2010),  214–234
  9. Dependence of equilibrium states of a two-phase elastic medium on temperature for a positive coefficient of surface tension

    Zap. Nauchn. Sem. POMI, 318 (2004),  220–232
  10. Dependence of the phase transition temperature on the domain size

    Zap. Nauchn. Sem. POMI, 310 (2004),  98–113
  11. Equilibrium states of stratified two-phase bodies under given boundary loads

    Zap. Nauchn. Sem. POMI, 288 (2002),  134–151
  12. Association of character of states of an equilibrium of a two-phase elastic medium on parameters of a problem

    Zap. Nauchn. Sem. POMI, 271 (2000),  175–187
  13. Matching of two modes of the registration of surface energy for a problem about phase transitions in a thermoelasticity

    Zap. Nauchn. Sem. POMI, 259 (1999),  182–194
  14. Martenoitic-anotenitic phase transformation variation problem for zero ourface tension coefficient

    Zap. Nauchn. Sem. POMI, 249 (1997),  231–243
  15. Free boundary surface bifurcation in the phase transition problem of elasticity

    Zap. Nauchn. Sem. POMI, 243 (1997),  169–200
  16. Variational problem of the two-phase medium elasticity theory for the zero surface tension coefficient

    Zap. Nauchn. Sem. POMI, 221 (1995),  208–225
  17. An existence theorem and weak Lagrange equations for a variational problem of the theory of phase transitions

    Sibirsk. Mat. Zh., 35:4 (1994),  835–846
  18. Linear perturbations of the operator div

    Sibirsk. Mat. Zh., 35:3 (1994),  647–656
  19. The connection of the two-phase medium state with the surface-tension coefficient and temperature

    Zap. Nauchn. Sem. POMI, 213 (1994),  131–150
  20. Rigidity of a surface with respect to deformations that satisfy first-order nonlinear differential equations

    Trudy Mat. Inst. Steklov., 179 (1988),  165–173
  21. The local structure of the solution set of a first-order nonlinear boundary value problem with constraints at points

    Sibirsk. Mat. Zh., 27:5 (1986),  140–154
  22. An incompressibility condition for a certain class of integral functionals. I

    Zap. Nauchn. Sem. LOMI, 115 (1982),  203–214
  23. On the local solvability of a problem of the non-linear theory of elasticity

    Zap. Nauchn. Sem. LOMI, 110 (1981),  163–173
  24. A method of separating the domains for elliptic equations with discontinuous coefficients

    Zh. Vychisl. Mat. Mat. Fiz., 21:1 (1981),  35–39
  25. The nonlinear problem of the symmetric deformation of a hollow sphere

    Zap. Nauchn. Sem. LOMI, 69 (1977),  149–156
  26. On the free surface of the drop in the symmetrical power field

    Zap. Nauchn. Sem. LOMI, 52 (1975),  160–174
  27. The asymptotic behavior of the eigenoscillations of an elliptic membrane

    Zh. Vychisl. Mat. Mat. Fiz., 14:2 (1974),  365–378

  28. To the jubillee of O. A. Ladyzhenskaya

    Zap. Nauchn. Sem. POMI, 288 (2002),  5–13


© Steklov Math. Inst. of RAS, 2026