RUS  ENG
Full version
PEOPLE

Penkov Ivan Boyanovich

Publications in Math-Net.Ru

  1. On an infinite limit of BGG categories $\mathcal O$

    Mosc. Math. J., 19:4 (2019),  655–693
  2. Ind-Varieties of Generalized Flags: A Survey of Results

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 147 (2018),  3–50
  3. Orbit duality in ind-varieties of maximal generalized flags

    Tr. Mosk. Mat. Obs., 78:1 (2017),  155–194
  4. On the Barth-Van de Ven-Tyurin-Sato theorem

    Mat. Sb., 206:6 (2015),  49–84
  5. Triviality of vector bundles on twisted ind-Grassmannians

    Mat. Sb., 202:1 (2011),  65–104
  6. Generalized Harish-Chandra modules

    Mosc. Math. J., 2:4 (2002),  753–767
  7. Borel–Weil–Bott theory for classical Lie supergroups

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 32 (1988),  71–124
  8. Elements of supergeometry

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 32 (1988),  3–25
  9. Characters of typical irreducible finite-dimensional $\mathfrak{q}(n)$-modules

    Funktsional. Anal. i Prilozhen., 20:1 (1986),  37–45
  10. Projectivity and $\mathscr D$-affinity of flag supermanifolds

    Uspekhi Mat. Nauk, 40:1(241) (1985),  211–212
  11. Serre duality for projective supermanifolds

    Funktsional. Anal. i Prilozhen., 18:1 (1984),  78–79
  12. Null-geodesics of complex Einstein spaces

    Funktsional. Anal. i Prilozhen., 16:1 (1982),  78–79
  13. Linear differential operators and the cohomology of analytic spaces

    Uspekhi Mat. Nauk, 37:4(226) (1982),  171–172

  14. Erratum to the paper “On generalized Harish-Chandra modules”

    Mosc. Math. J., 9:4 (2009),  931


© Steklov Math. Inst. of RAS, 2026