RUS  ENG
Full version
PEOPLE

Sadovskii Vladimir Mikhailovich

Publications in Math-Net.Ru

  1. Wave propagation in a blocky-layered medium with thin interlayers

    J. Sib. Fed. Univ. Math. Phys., 18:1 (2025),  119–129
  2. Problem of moving edge dislocation

    Prikl. Mekh. Tekh. Fiz., 66:1 (2025),  163–173
  3. The problem on an edge dislocation running at superseismic velocity

    Sib. Zh. Ind. Mat., 28:1 (2025),  67–79
  4. Reduction of the Cosserat-type nonlinear equations to the system of Godunov's form

    J. Sib. Fed. Univ. Math. Phys., 17:1 (2024),  55–64
  5. Algorithms of solution correction for numerical simulation of the dynamics of elastic-plastic, granular and porous media

    Num. Meth. Prog., 25:1 (2024),  78–91
  6. Modeling of electric field impact on a cholesteric liquid crystal layer

    J. Sib. Fed. Univ. Math. Phys., 16:4 (2023),  475–487
  7. Analysis of bending of composite plates with account for the difference in resistance to tension and compression

    Prikl. Mekh. Tekh. Fiz., 62:5 (2021),  172–183
  8. Modeling of the dynamics of a liquid crystal under the action of weak perturbations

    Prikl. Mekh. Tekh. Fiz., 62:1 (2021),  193–206
  9. One-dimensional finite difference schemes for splitting method realization in axisymmetric equations of the dynamics of elastic medium

    Num. Meth. Prog., 22:1 (2021),  47–66
  10. Finite difference schemes for modelling the propagation of axisymmetric elastic longitudinal waves

    J. Sib. Fed. Univ. Math. Phys., 13:5 (2020),  644–654
  11. Thermodynamic consistency and mathematical well-posedness in the theory of elastoplastic, granular, and porous materials

    Zh. Vychisl. Mat. Mat. Fiz., 60:4 (2020),  738–751
  12. Strong bending of a beam from a fibrous composite, differently resistant to tension and compression

    J. Sib. Fed. Univ. Math. Phys., 12:5 (2019),  533–542
  13. Thermodynamically consistent equations of the couple stress elasticity

    Dal'nevost. Mat. Zh., 16:2 (2016),  209–222
  14. Mathematical modeling of the impact produced by magnetic disks on living cells

    J. Sib. Fed. Univ. Math. Phys., 9:4 (2016),  432–442
  15. Analyzing the deformation of a porous medium with account for the collapse of pores

    Prikl. Mekh. Tekh. Fiz., 57:5 (2016),  53–65
  16. Analysis of resonant excitation of layered and block media on the basis of discrete models

    Num. Meth. Prog., 16:2 (2015),  318–327
  17. Radial expansion of a cylindrical or spherical cavity in an infinite porous medium

    Prikl. Mekh. Tekh. Fiz., 55:4 (2014),  160–173
  18. A numerical algorithm for the analysis of viscoelastic waves in the Kelvin–Voigt medium

    Num. Meth. Prog., 15:1 (2014),  98–108
  19. Analysis of the Dispersion of Hydroacoustic Waves on the Basis of Viscoelastic Model

    J. Sib. Fed. Univ. Math. Phys., 6:3 (2013),  342–348
  20. Thermodynamically consistent system of conservation laws of nonsymmetric elasticity theory

    Dal'nevost. Mat. Zh., 11:2 (2011),  201–212
  21. Conditions for convexity of the isotropic function of the second-rank tensor

    J. Sib. Fed. Univ. Math. Phys., 4:2 (2011),  265–272
  22. Numerical algorithms for the analysis of elastic waves in block media with thin interlayers

    Num. Meth. Prog., 12:4 (2011),  435–442
  23. Resonant properties of moment Cosserat continuum

    Prikl. Mekh. Tekh. Fiz., 51:3 (2010),  126–136
  24. Radial expansion of a granular medium in spherical and cylindrical layers

    Prikl. Mekh. Tekh. Fiz., 50:3 (2009),  190–196
  25. Modeling of a Deformation Localization in a Medium with Different Strengths

    J. Sib. Fed. Univ. Math. Phys., 1:3 (2008),  272–283
  26. Computational Algorithm for Calculation of Wave Fields in Block Media on Multiprocessor Computers

    J. Sib. Fed. Univ. Math. Phys., 1:2 (2008),  210–220
  27. Numerical analysis of seismic wave propagation in block media on multiprocessor computers

    Num. Meth. Prog., 9:1 (2008),  66–76
  28. A numerical algorithm and a computer system for the analysis of rheological schemes

    Num. Meth. Prog., 7:1 (2006),  125–132
  29. Parallel implementation of an algorithm for the computation of elasto-plastic waves in a granular medium

    Num. Meth. Prog., 6:1 (2005),  209–216
  30. Rheological models of hetero-modular and granular media

    Dal'nevost. Mat. Zh., 4:2 (2003),  252–263
  31. Elastoplastic waves in granular materials

    Prikl. Mekh. Tekh. Fiz., 44:5 (2003),  168–176
  32. Thermo-stressed state of the bottom section of an aluminium electrolyzer

    Sib. Zh. Ind. Mat., 5:2 (2002),  61–69
  33. Free-flowing media dynamic problems

    Mat. Model., 13:5 (2001),  62–74
  34. Study of the dynamic contact interaction of deformable bodies

    Prikl. Mekh. Tekh. Fiz., 39:4 (1998),  167–173
  35. The numerical realization of a variational inequality in the dynamics of elastoplastic bodies

    Zh. Vychisl. Mat. Mat. Fiz., 36:9 (1996),  177–191
  36. Toward a theory of the propagation of elastoplastic waves in strain-hardening media

    Prikl. Mekh. Tekh. Fiz., 35:5 (1994),  166–172


© Steklov Math. Inst. of RAS, 2026