RUS  ENG
Full version
PEOPLE

Trusov Petr Valentinovich

Publications in Math-Net.Ru

  1. Structural-mechanical model for describing the Portevin–Le Châtelier effect

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:3 (2025),  448–471
  2. A mathematical model for evolution of human functional disorders influenced by environment factors

    Mat. Biolog. Bioinform., 18:Suppl. (2023),  73–93
  3. Flow in antroduodenal part of digestive tract: mathematical model and some results

    Mat. Biolog. Bioinform., 18:Suppl. (2023),  54–72
  4. Modeling of human breath: conceptual and mathematical statements

    Mat. Biolog. Bioinform., 18:Suppl. (2023),  38–53
  5. Regulation of organism's antiviral immune response: mathematical model, qualitative analysis, results

    Mat. Biolog. Bioinform., 18:Suppl. (2023),  17–37
  6. Mathematical model of airflow and solid particles transport in the human nasal cavity

    Mat. Biolog. Bioinform., 18:Suppl. (2023),  1–16
  7. Numeric investigation of non-stationary dust-containing airflow and deposition of dust particles in the lower airways

    Mat. Biolog. Bioinform., 18:2 (2023),  347–366
  8. Mathematical model of airflow and solid particles transport in the human nasal cavity

    Mat. Biolog. Bioinform., 16:2 (2021),  349–366
  9. Regulation of organism's antiviral immune response: mathematical model, qualitative analysis, results

    Mat. Biolog. Bioinform., 13:2 (2018),  402–425
  10. Modeling of human breath: conceptual and mathematical statements

    Mat. Biolog. Bioinform., 11:1 (2016),  64–80
  11. Flow in antroduodenal part of digestive tract: mathematical model and some results

    Mat. Biolog. Bioinform., 10:1 (2015),  34–53
  12. A Mathematical Model for Evolution of Human Functional Disorders Influenced by Environment Factors

    Mat. Biolog. Bioinform., 7:2 (2012),  589–610
  13. Mathematical modelling of the evolution of polycrystalline materials structure under elastoplastic deformation

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 152:4 (2010),  225–237
  14. Several properties of mathematical models

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2010, no. 4(78),  117–126
  15. Comparative analysis of some formulations of the stability problem

    Prikl. Mekh. Tekh. Fiz., 50:1 (2009),  110–117
  16. Stability approach to testing the constitutive relations of superplasticity

    Prikl. Mekh. Tekh. Fiz., 48:6 (2007),  170–177
  17. Fragmentation of metals at high strains: a mechanism of formation of spatially-modulated vortex structures

    Prikl. Mekh. Tekh. Fiz., 43:2 (2002),  176–186
  18. Simulation of the process of pump rods recovery

    Sib. Zh. Ind. Mat., 5:1 (2002),  120–126
  19. The gaseous mix motion through a forested area

    Mat. Model., 11:7 (1999),  3–16
  20. Model for plasticity effects in metals under nonproportional cyclic loading

    Prikl. Mekh. Tekh. Fiz., 40:6 (1999),  144–151
  21. Fractal Description of a Growing Dendritic Structure

    Regul. Chaotic Dyn., 4:4 (1999),  94–99
  22. Variant of generalization of A. A. Il'yushin's theory of elastoplastic processes for the case of large plastic strains

    Prikl. Mekh. Tekh. Fiz., 29:2 (1988),  153–161
  23. Corotation derivatives and defining relations in the theory of large plastic strains

    Prikl. Mekh. Tekh. Fiz., 28:2 (1987),  160–166
  24. An approach to control of the level of residual stresses

    Differ. Uravn., 16:3 (1980),  483–491


© Steklov Math. Inst. of RAS, 2026