RUS  ENG
Full version
PEOPLE

Blatov Igor Anatolevich

Publications in Math-Net.Ru

  1. On estimates of the mean queue length for single-channel queuing systems in terms of statistical unconditional second-order moments of the modified arrival flow

    Avtomat. i Telemekh., 2022, no. 1,  113–129
  2. Application of cubic splines on Bakhvalov meshes in the case of a boundary layer

    Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021),  1955–1973
  3. Generalized spline interpolation of functions with large gradients in boundary layers

    Zh. Vychisl. Mat. Mat. Fiz., 60:3 (2020),  413–428
  4. Interpolation on the Bakhvalov mesh in the presence of an exponential boundary layer

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161:4 (2019),  497–508
  5. Approximation of a function and its derivatives on the basis of cubic spline interpolation in the presence of a boundary layer

    Zh. Vychisl. Mat. Mat. Fiz., 59:3 (2019),  367–379
  6. Application of spline wavelets or decorrelation of time series

    Mat. Model., 30:6 (2018),  60–75
  7. On the parameter-uniform convergence of exponential spline interpolation in the presence of a boundary layer

    Zh. Vychisl. Mat. Mat. Fiz., 58:3 (2018),  365–382
  8. About the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer

    Sib. Zh. Vychisl. Mat., 20:2 (2017),  131–144
  9. Parabolic spline interpolation for functions with large gradient in the boundary layer

    Sibirsk. Mat. Zh., 58:4 (2017),  745–760
  10. Cubic spline interpolation of functions with high gradients in boundary layers

    Zh. Vychisl. Mat. Mat. Fiz., 57:1 (2017),  9–28
  11. Convergence of the adapting grid method of Bakhvalov's type for singularly perturbed boundary value problems

    Sib. Zh. Vychisl. Mat., 19:1 (2016),  47–59
  12. Conditional $\varepsilon$-uniform boundedness of Galerkin projectors and convergence of an adaptive mesh method as applied to singularly perturbed boundary value problems

    Zh. Vychisl. Mat. Mat. Fiz., 56:7 (2016),  1323–1334
  13. Analysis and calculation of queuing system with delay

    Avtomat. i Telemekh., 2015, no. 11,  51–59
  14. The modelling of parametrs of motion of centre of mass of space vehicle and methods of processing

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 6(107),  147–152
  15. Application of semiorthogonal spline wavelets and the Galerkin method to the numerical simulation of thin wire antennas

    Zh. Vychisl. Mat. Mat. Fiz., 53:5 (2013),  727–736
  16. Solving of the problem of radiation of the linear structure, located close to the perfectly conducting screen, reduced to the two-dimensional system of Fredholm equations of the first order

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2010, no. 2(76),  13–23
  17. Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems

    Zh. Vychisl. Mat. Mat. Fiz., 50:9 (2010),  1550–1568
  18. О приближенном решении одного класса интегральных уравнений

    Matem. Mod. Kraev. Zadachi, 3 (2007),  38–39
  19. Построение сплайновых вейвлет на прямоугольнике для решения двумерного уравнения фредгольма второго рода методом Галеркина

    Matem. Mod. Kraev. Zadachi, 3 (2007),  17–19
  20. On the combination of the incomplete factorization method and the fast Fourier method for solving boundary value problems for the Poisson equation in domains with curvilinear boundary

    Zh. Vychisl. Mat. Mat. Fiz., 43:5 (2003),  730–743
  21. An incomplete factorization method with the fast Fourier transform for discrete Poisson equations with different boundary conditions

    Sib. Zh. Vychisl. Mat., 4:3 (2001),  229–242
  22. On the asymptotically exact estimates of preconditioners of the incomplete factorization type

    Sib. Zh. Vychisl. Mat., 3:1 (2000),  11–42
  23. On incomplete factorization for the fast Fourier transform for the discrete Poisson equation in a curvilinear boundary domain

    Sib. Zh. Vychisl. Mat., 1:3 (1998),  197–216
  24. Bounds for elements of $LU$ factorizations of sparse matrices and their application to incomplete factorization methods

    Zh. Vychisl. Mat. Mat. Fiz., 37:3 (1997),  259–276
  25. On Galerkin's finite element method for singularly perturbed parabolic initial-boundary value problems. II. Construction of and estimates for discrete Green functions

    Differ. Uravn., 32:7 (1996),  912–922
  26. On Galerkin's finite element method for singularly perturbed parabolic initial-boundary value problems. I. Main result and estimates for the norms of projectors

    Differ. Uravn., 32:5 (1996),  661–669
  27. On algebras and applications of operators with pseudosparse matrices

    Sibirsk. Mat. Zh., 37:1 (1996),  36–59
  28. On the Galerkin finite-element method for elliptic quasilinear singularly perturbed boundary value problems. III. Problems with angular boundary layers

    Differ. Uravn., 30:3 (1994),  467–479
  29. Estimates that are unimprovable with respect to order in Galerkin's finite-element method for singularly perturbed boundary value problems

    Dokl. Akad. Nauk, 328:4 (1993),  424–426
  30. Fourth order accuracy collocation method for singularly perturbed boundary value problems

    Sibirsk. Mat. Zh., 34:1 (1993),  16–31
  31. Incomplete factorization methods for systems with sparse matrices

    Zh. Vychisl. Mat. Mat. Fiz., 33:6 (1993),  819–836
  32. On the Galerkin finite-element method for elliptic quasilinear singularly perturbed boundary value problems. II

    Differ. Uravn., 28:10 (1992),  1799–1810
  33. On the Galerkin finite-element method for elliptic quasilinear singularly perturbed boundary value problems. I

    Differ. Uravn., 28:7 (1992),  1168–1177
  34. Estimates for elements of inverse matrices and modifications of the matrix sweep method

    Sibirsk. Mat. Zh., 33:2 (1992),  10–21
  35. Estimates of the elements of inverse matrices and pivotal condensation methods of incomplete block factorization

    Zh. Vychisl. Mat. Mat. Fiz., 32:11 (1992),  1683–1696
  36. Convergence of the spline-collocation method for singularly perturbed boundary value problems on locally uniform grids

    Differ. Uravn., 26:7 (1990),  1191–1197
  37. The projection method for singularly perturbed boundary value problems

    Zh. Vychisl. Mat. Mat. Fiz., 30:7 (1990),  1031–1044
  38. The spline-collocation method on adaptive grids for singularly perturbed boundary value problems

    Dokl. Akad. Nauk SSSR, 304:4 (1989),  785–788
  39. Convergence of the spline collocation method on optimal grids for singularly perturbed boundary value problems

    Differ. Uravn., 24:11 (1988),  1977–1987
  40. Convergence in the uniform norm of the Galerkin method for a nonlinear singularly perturbed boundary value problem

    Zh. Vychisl. Mat. Mat. Fiz., 26:8 (1986),  1175–1188
  41. Convergence of the Galerkin method for a nonlinear two-point singularly perturbed boundary value problem in the space $C[a,b]$

    Zh. Vychisl. Mat. Mat. Fiz., 25:7 (1985),  1001–1008


© Steklov Math. Inst. of RAS, 2026