RUS  ENG
Full version
PEOPLE

Korablev Philipp Glebovich

Publications in Math-Net.Ru

  1. Invariants of links and $3$-manifolds from the modular category with two simple objects

    Mat. Tr., 28:1 (2025),  39–93
  2. Vortex group for knots and links in a 3-sphere

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:4 (2025),  203–213
  3. Fibonacci representations of braid groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024),  149–169
  4. Homologically trivial part of the Turaev – Viro invariant order $7$

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  698–707
  5. Configuration homological ${\mathbb Z}_2$-invariants of manifolds

    Chelyab. Fiz.-Mat. Zh., 6:4 (2021),  427–439
  6. Quandles, quasoids and projections

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1261–1277
  7. Cocyclic quasoid knot invariants

    Sibirsk. Mat. Zh., 61:2 (2020),  344–366
  8. On a Yang — Baxter operator and the corresponding knots invariant

    Chelyab. Fiz.-Mat. Zh., 4:3 (2019),  255–264
  9. Classification of low complexity knotoids

    Sib. Èlektron. Mat. Izv., 15 (2018),  1237–1244
  10. Knotoids and knots in the thickened torus

    Sibirsk. Mat. Zh., 58:5 (2017),  1080–1090
  11. Quazoids in knot theory

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  212–221
  12. Casson invariant for a series of 3-manifolds

    Chelyab. Fiz.-Mat. Zh., 1:4 (2016),  56–62
  13. Manifolds of cubic complexity two

    Sib. Èlektron. Mat. Izv., 13 (2016),  1–15
  14. Geometric representations for even cubilations

    Vestnik Chelyabinsk. Gos. Univ., 2015, no. 17,  18–21
  15. Conway–Gordon problem for reduced complete spatial graphs

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:3 (2015),  16–21
  16. Infinite series of Kishino type knots

    Sib. Èlektron. Mat. Izv., 11 (2014),  975–980
  17. Triviality of function $\omega_2$ for spatial complete graphs

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:2 (2013),  51–60
  18. Function $\omega_2$ for full bipatite spatial graphs

    Vestnik Chelyabinsk. Gos. Univ., 2012, no. 15,  125–128
  19. The order of prime summands for virtual knots

    Vestnik Chelyabinsk. Gos. Univ., 2012, no. 15,  119–124
  20. Uniqueness of knot roots in $F\times I$ and prime decompositions of virtual knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  160–175
  21. On genus two three-manifolds

    Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11,  105–121
  22. On a family of graph manifolds of genus 2

    Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11,  97–104
  23. Graph manifolds genus 2

    Vestnik Chelyabinsk. Gos. Univ., 2008, no. 10,  94–100
  24. Classification of Heegaard diagrams of genus three

    Fundam. Prikl. Mat., 11:5 (2005),  91–97


© Steklov Math. Inst. of RAS, 2026