|
|
Publications in Math-Net.Ru
-
On first-passage times for symmetric random walks without Lindeberg condition
Sib. Èlektron. Mat. Izv., 20:1 (2023), 86–99
-
On detecting alternatives by one-parametric recursive residuals
Sib. Èlektron. Mat. Izv., 19:1 (2022), 292–308
-
Crossing an Asymptotically Square-Root Boundary by the Brownian Motion
Trudy Mat. Inst. Steklova, 316 (2022), 113–128
-
On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1667–1688
-
On representations and simulation of conditioned random walks on integer lattices
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1556–1571
-
Remarks on invariance principle for one-parametric recursive residuals
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1058–1074
-
On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process
Sib. Èlektron. Mat. Izv., 18:1 (2021), 9–26
-
Prokhorov distance with rates of convergence under sublinear expectations
Teor. Veroyatnost. i Primenen., 65:4 (2020), 778–804
-
On improvement of statistical estimators in a power regression problem
Sib. Èlektron. Mat. Izv., 16 (2019), 1901–1912
-
On Borovkov's estimate in the Invariance Principle
Sib. Èlektron. Mat. Izv., 16 (2019), 1776–1784
-
On sufficient conditions for a Gaussian approximation of kernel estimates for distribution densities
Sib. Èlektron. Mat. Izv., 15 (2018), 1530–1552
-
First-passage times over moving boundaries for asymptotically stable walks
Teor. Veroyatnost. i Primenen., 63:4 (2018), 755–778
-
On a structure of a conditioned random walk on the integers with bounded local times
Sib. Èlektron. Mat. Izv., 14 (2017), 1265–1278
-
Existence of explicit asymptotically normal estimators in a multiple logarithmic regression problem
Sib. Èlektron. Mat. Izv., 14 (2017), 972–979
-
Conditions of asymptotic normality of one-step $M$-estimators
Sib. J. Pure and Appl. Math., 16:4 (2016), 46–64
-
The existence of explicit asymptotically normal estimators of an unknown parameter in a logarithmic regression problem
Sib. Èlektron. Mat. Izv., 12 (2015), 874–883
-
On accuracy of approximation in Koul’s theorem for weighted empirical processes
Sib. Èlektron. Mat. Izv., 12 (2015), 784–794
-
About conditions of gaussian approximation of kernel estimates for distribution density
Sib. Èlektron. Mat. Izv., 12 (2015), 766–776
-
Explicit estimators of an unknown parameter in a power regression problem
Sib. Èlektron. Mat. Izv., 11 (2014), 725–733
-
On conditions for asymptotic normality of Fisher's one-step estimators in one-parameter families of distributions
Sib. Èlektron. Mat. Izv., 11 (2014), 464–475
-
On asymptotics of the distributions of some two-step statistical estimators of a mutlidimensional parameter
Mat. Tr., 16:1 (2013), 89–120
-
Explicit asymptotically normal estimators of an unknown parameter in a partially linear regression problem
Sib. Èlektron. Mat. Izv., 10 (2013), 719–726
-
On asymptotics of the distribution of a two-step statistical estimator of a one-dimensional parameter
Sib. Èlektron. Mat. Izv., 10 (2013), 627–640
-
On solutions to the equation for improving additives in regression problems
Mat. Tr., 14:2 (2011), 127–146
-
Consistent estimation in a linear regression problem with random errors in coefficients
Sibirsk. Mat. Zh., 52:4 (2011), 894–912
-
A general estimate in the invariance principle
Sibirsk. Mat. Zh., 52:4 (2011), 876–893
-
Improvement of estimators in a linear regression problem with random errors in coefficients
Sibirsk. Mat. Zh., 52:1 (2011), 143–160
-
Asymptotically optimal estimation in a linear regression problem with random errors in coefficients
Sibirsk. Mat. Zh., 51:1 (2010), 128–145
-
Estimates of Berry–Esseen type for probabilities of large deviations under violation of Cramér condition
Sib. Èlektron. Mat. Izv., 6 (2009), 191–198
-
Asymptotically optimal estimation in the linear regression problem in the case of violation of some classical assumptions
Sibirsk. Mat. Zh., 50:2 (2009), 380–396
-
Asymptotically normal estimation in the linear-fractional regression problem with random errors in coefficients
Sibirsk. Mat. Zh., 49:3 (2008), 592–619
-
On conditions for SLLN for martingales with identically distributed increments
Sib. Èlektron. Mat. Izv., 4 (2007), 547–552
-
Asymptotically optimal estimation in a linear-fractional regression problem with random errors in coefficients
Sibirsk. Mat. Zh., 47:6 (2006), 1372–1400
-
Estimates in the invariance principle in terms of truncated power moments
Sibirsk. Mat. Zh., 47:6 (2006), 1355–1371
-
Convergence and convergence rate to fractional Brownian motion for weighted random sums
Sib. Èlektron. Mat. Izv., 1 (2004), 47–63
-
On transient phenomena in random walks
Teor. Veroyatnost. i Primenen., 49:2 (2004), 382–395
-
Asymptotically normal explicit estimation of parameters in the Michaelis–Menten equation
Sibirsk. Mat. Zh., 42:3 (2001), 610–633
-
Asymptotically normal estimation of a multidimensional parameter in the linear-fractional regression problem
Sibirsk. Mat. Zh., 42:2 (2001), 372–388
-
Asymptotically normal estimation of a parameter in a linear-fractional regression problem
Sibirsk. Mat. Zh., 41:1 (2000), 150–163
-
On conditions for convergence of the densities of smoothed distributions in the central limit theorem
Sibirsk. Mat. Zh., 37:4 (1996), 932–939
-
Estimates for the accuracy of coupling in the central limit theorem
Sibirsk. Mat. Zh., 37:4 (1996), 919–931
-
Limit theorems for random processes
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 82 (1995), 5–194
-
Estimates of Berry–Esseen type for the probabilities of large deviations
Sibirsk. Mat. Zh., 32:4 (1991), 133–142
-
Reconstruction of the integral curve of a system of linear differential equations from the measurement results
Trudy Inst. Mat. Sib. Otd. AN SSSR, 15 (1989), 146–172
-
On the accuracy of normal approximation in the invariance principle
Trudy Inst. Mat. Sib. Otd. AN SSSR, 13 (1989), 40–66
-
On conditions for the asymptotic efficiency of recursive estimates for the location parameter
Sibirsk. Mat. Zh., 28:3 (1987), 133–139
-
On the rate of convergence in the multidimensional invariance principle for functionals of integral type
Sibirsk. Mat. Zh., 28:3 (1987), 78–88
-
Estimates in an invariance principle
Trudy Inst. Mat. Sib. Otd. AN SSSR, 5 (1985), 27–44
-
An invariance principle for a sum of minima
Sibirsk. Mat. Zh., 26:5 (1985), 62–70
-
Asymptotics of coefficients of factorized Euler polynomials
Sibirsk. Mat. Zh., 26:1 (1985), 23–29
-
Remarks on inequalities for the probabilities of large deviations
Teor. Veroyatnost. i Primenen., 30:1 (1985), 127–131
-
Rate of convergence in the invariance principle for variables with exponential moments that are not identically distributed
Trudy Inst. Mat. Sib. Otd. AN SSSR, 3 (1984), 4–49
-
On Levy–Kolmogorov inequalities for random variables with values in a Banach space
Teor. Veroyatnost. i Primenen., 29:4 (1984), 793–799
-
An estimate for the density of the distribution of functionals of integral type
Trudy Inst. Mat. Sib. Otd. AN SSSR, 1 (1982), 180–186
-
Asymptotically optimal tests for testing composite similar hypotheses
Trudy Inst. Mat. Sib. Otd. AN SSSR, 1 (1982), 79–90
-
Estimates of the rate of convergence in the invariance principle
Trudy Inst. Mat. Sib. Otd. AN SSSR, 1 (1982), 72–78
-
On the estimates of the rate of convergence in the invariance principle for Banach spaces
Teor. Veroyatnost. i Primenen., 25:4 (1980), 734–744
-
The rate of convergence of the distribution of the likelihood ratio statistic
Sibirsk. Mat. Zh., 18:5 (1977), 1168–1175
-
Estimates of the rate of convergence in the invariance principle
Dokl. Akad. Nauk SSSR, 219:5 (1974), 1076–1078
-
The convergence of the distributions of functionals of processes that are defined on the whole axis
Sibirsk. Mat. Zh., 15:1 (1974), 102–119
-
On the speed of convergence in a boundary problem
Teor. Veroyatnost. i Primenen., 19:2 (1974), 416–421
-
Remarks on convergence of random processes in non-separable metric spaces and on the non-existence of a Borel measure for processes in $C(0,\infty)$
Teor. Veroyatnost. i Primenen., 18:4 (1973), 812–815
-
On Zhulev's paper “On large deviations. II”
Teor. Veroyatnost. i Primenen., 51:2 (2006), 445–446
© , 2026