RUS  ENG
Full version
PEOPLE

Bugrov Dmitry I

Publications in Math-Net.Ru

  1. Comparative analysis of modified Hodgkin–Huxley models for neuron activity

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 5,  73–76
  2. Parametric excitation in the model of afferent primary neuron

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 3,  83–86
  3. Limit domain of attainability for a linear oscillating third-order system of a special type

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 5,  65–69
  4. Variation of the size of reachable region of second-order linear system

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 2,  47–52
  5. Attainability set and robust stability of perturbed oscillatory systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 1,  67–71
  6. Change of the attainability set after transition to a reduced system

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 2,  58–60
  7. Features of the support reaction in the range maximization problem in a resistant medium

    Fundam. Prikl. Mat., 22:2 (2018),  147–158
  8. Estimation of the attainability set for a linear system based on a linear matrix inequality

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 6,  51–55
  9. Estimation of the angular rotation velocity of a body using a tracking system

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 1,  68–71
  10. Bulgakov problem of the accumulation of perturbations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 5,  39–43
  11. Telemetry-based estimate of orientation accuracy for the Tat'yana-2 satellite

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 3,  69–72
  12. Identification of non-equal rigidity of suspension of a one-axis vibrational gyroscope

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 3,  47–52
  13. Single-axis vibratory gyroscope

    Fundam. Prikl. Mat., 11:8 (2005),  149–163
  14. Eigenoscillations of uniaxial vibrational gyroscope

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 4,  64–66
  15. A simulation model of an aircraft trajectory stabilization system

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 1,  43–48
  16. On the absence of singular control regimes in a time-optimality problem

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 6,  52–55


© Steklov Math. Inst. of RAS, 2026