RUS  ENG
Full version
PEOPLE

Ermolaev Yurii Borisovich

Publications in Math-Net.Ru

  1. A realization of Cartan extensions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 10,  3–16
  2. Integral bases of classical Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 3,  16–25
  3. On the proportionality of Lie words in classical Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 9,  25–36
  4. On a realization of a free Lie algebra

    Sibirsk. Mat. Zh., 39:1 (1998),  32–44
  5. Universal Cartan extension

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 11,  22–32
  6. On a certain algebra on a set of graphs

    Sibirsk. Mat. Zh., 35:4 (1994),  793–800
  7. V. V. Morozov's regularity theorem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 10,  5–10
  8. Validity of the Kostrikin–Shafarevich conjecture for Lie algebras with a filtration of sufficiently long length

    Tr. Geom. Semin., 20 (1990),  39–43
  9. Lie algebras that preserve bilinear forms

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 11,  83–87
  10. Lie algebras with monogenic grading of a fairly large length

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 2,  60–63
  11. A method of extensions of Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 12,  61–64
  12. On the question of Cartan prolongations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 11,  30–40
  13. Monogenic graded Lie algebras $(q=1,$ $r=r_0-2)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 7,  74–77
  14. On the question of the existence of simple Lie algebras with graduation of a fairly large length

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 10,  66–69
  15. On a class of Lie algebras over a field of prime characteristic

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 8,  70–74
  16. On a class of Lie algebras over a field of prime characteristic

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 8,  66–70
  17. Irreducible modules with filtration $(p>0)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 7,  80–84
  18. Simple graded Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 5,  78–82
  19. The structure of the center of the universal enveloping algebra of the Zassenhaus algebra

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 12,  46–59
  20. Central elements of the universal enveloping algebra of the Zassenhaus algebra

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 6,  73–88
  21. The minimal polynomial for a central element of the universal enveloping algebra of a Witt algebra

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 10,  32–41
  22. A formula for taking a power of a product of two elements of an associative ring

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 8,  16–27
  23. Computation of the central element of the universal enveloping algebra of a Witt algebra

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 5,  20–26
  24. Lie algebras of rank 1 with a root system in a prime field

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 5,  38–50
  25. The simultaneous reduction of symmetric and Hermitian forms

    Izv. Vyssh. Uchebn. Zaved. Mat., 1961, no. 2,  10–21
  26. Simultaneous reduction of a pair of bilinear forms to canonical form

    Dokl. Akad. Nauk SSSR, 132:2 (1960),  257–259

  27. Vladimir Vladimirovich Morozov (obituary)

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 2,  140–141


© Steklov Math. Inst. of RAS, 2026