RUS  ENG
Full version
PEOPLE

Erokhin Vladimir Ivanovich

Publications in Math-Net.Ru

  1. An accelerated Fejér-type process for finding a non-negative solution to a system of linear algebraic equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:3 (2025),  121–137
  2. Linear binary classification of data with interval uncertainty

    Artificial Intelligence and Decision Making, 2023, no. 3,  76–83
  3. Sufficient conditions for the significance of the coefficients of linear models and the polynomial-time complexity of their determination from data with interval uncertainty

    Avtomat. i Telemekh., 2022, no. 12,  18–30
  4. About A. N. Tikhonov's regularized least squares method

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:1 (2017),  4–16
  5. Minimum-Euclidean-norm matrix correction for a pair of dual linear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017),  1788–1803
  6. Generalizations of Tikhonov’s regularized method of least squares to non-Euclidean vector norms

    Zh. Vychisl. Mat. Mat. Fiz., 57:9 (2017),  1433–1443
  7. On some sufficient conditions for the solvability and unsolvability of matrix correction problems for improper linear programming problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  110–116
  8. On sufficient conditions for the solvability of linear programming for matrix correction of the system of constraints

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  144–156
  9. Matrix corrections minimal with respect to the Euclidean norm for linear programming problems

    Avtomat. i Telemekh., 2012, no. 2,  11–24
  10. Construction of model approximate systems of linear algebraic equations with known solutions

    Sib. Èlektron. Mat. Izv., 7 (2010),  207–217
  11. Tikhonov solutions of approximate systems of linear algebraic equations under finite perturbations of their matrices

    Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010),  618–635
  12. Matrix correction of a dual pair of improper linear programming problems with a block structure

    Zh. Vychisl. Mat. Mat. Fiz., 48:1 (2008),  80–89
  13. Matrix correction of a dual pair of improper linear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007),  587–601
  14. Optimal matrix correction of incompatible systems of linear algebraic equations with block matrices of coefficients

    Diskretn. Anal. Issled. Oper., Ser. 2, 12:2 (2005),  3–23
  15. Optimal matrix correction and regularization of incompatible linear models

    Diskretn. Anal. Issled. Oper., Ser. 2, 9:2 (2002),  41–77
  16. Properties of optimal single-rank correction of matrices of coefficients of inconsistent nonhomogeneous linear models

    Diskretn. Anal. Issled. Oper., Ser. 2, 9:1 (2002),  33–60
  17. An extension of the Sherman–Morrison identity to the case of rank-one modification of the full rank pseudoinverse matrix

    Zh. Vychisl. Mat. Mat. Fiz., 39:8 (1999),  1280–1282
  18. Modification of Greville's algorithm for removing columns (rows) when constructing a pseudo-inverse matrix

    Zh. Vychisl. Mat. Mat. Fiz., 29:11 (1989),  1753


© Steklov Math. Inst. of RAS, 2026