|
|
Publications in Math-Net.Ru
-
The formula of maximal possible rank of commutator subgroups of finite $p$-groups
Sib. Èlektron. Mat. Izv., 19:2 (2022), 804–808
-
The strict upper bound of ranks of commutator subgroups of finite $p$-groups
Sib. Èlektron. Mat. Izv., 16 (2019), 1885–1900
-
Rank of commutator subgroup of finite $p$-group generated by elements of order $p>2$
Sib. Èlektron. Mat. Izv., 15 (2018), 1332–1343
-
On the commutator subgroups of finite $2$-groups generated by involutions
Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017), 77–84
-
On finite groups generated by involutions
Sib. Èlektron. Mat. Izv., 13 (2016), 426–433
-
On infinite Alperin groups
Sib. Èlektron. Mat. Izv., 12 (2015), 210–222
-
On the second commutants of finite Alperin groups
Sibirsk. Mat. Zh., 55:1 (2014), 25–43
-
On finite Alperin $2$-groups with elementary abelian second commutants
Sibirsk. Mat. Zh., 53:3 (2012), 543–557
-
Finite Alperin 2-groups with cyclic second commutants
Algebra Logika, 50:3 (2011), 326–350
-
On finite Alperin $p$-groups with homocyclic commutator subgroup
Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 53–65
-
On finite $3$-generated $2$-groups of Alperin
Sib. Èlektron. Mat. Izv., 4 (2007), 155–168
-
On finite $p$-groups with a metacyclic commutator group
Sibirsk. Mat. Zh., 39:5 (1998), 999–1004
-
Finite groups with an involution whose centralizer has a
quotient group isomorphic to $L_{2}(2^n)$
Algebra Logika, 21:4 (1982), 402–409
-
Finite groups with bounded involution centralizer
Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 10, 8–14
-
On a conjecture of Alperin
Sibirsk. Mat. Zh., 21:1 (1980), 200–202
© , 2026