RUS  ENG
Full version
PEOPLE

Veretennikov Boris Mikhailovich

Publications in Math-Net.Ru

  1. The formula of maximal possible rank of commutator subgroups of finite $p$-groups

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  804–808
  2. The strict upper bound of ranks of commutator subgroups of finite $p$-groups

    Sib. Èlektron. Mat. Izv., 16 (2019),  1885–1900
  3. Rank of commutator subgroup of finite $p$-group generated by elements of order $p>2$

    Sib. Èlektron. Mat. Izv., 15 (2018),  1332–1343
  4. On the commutator subgroups of finite $2$-groups generated by involutions

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  77–84
  5. On finite groups generated by involutions

    Sib. Èlektron. Mat. Izv., 13 (2016),  426–433
  6. On infinite Alperin groups

    Sib. Èlektron. Mat. Izv., 12 (2015),  210–222
  7. On the second commutants of finite Alperin groups

    Sibirsk. Mat. Zh., 55:1 (2014),  25–43
  8. On finite Alperin $2$-groups with elementary abelian second commutants

    Sibirsk. Mat. Zh., 53:3 (2012),  543–557
  9. Finite Alperin 2-groups with cyclic second commutants

    Algebra Logika, 50:3 (2011),  326–350
  10. On finite Alperin $p$-groups with homocyclic commutator subgroup

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  53–65
  11. On finite $3$-generated $2$-groups of Alperin

    Sib. Èlektron. Mat. Izv., 4 (2007),  155–168
  12. On finite $p$-groups with a metacyclic commutator group

    Sibirsk. Mat. Zh., 39:5 (1998),  999–1004
  13. Finite groups with an involution whose centralizer has a quotient group isomorphic to $L_{2}(2^n)$

    Algebra Logika, 21:4 (1982),  402–409
  14. Finite groups with bounded involution centralizer

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 10,  8–14
  15. On a conjecture of Alperin

    Sibirsk. Mat. Zh., 21:1 (1980),  200–202


© Steklov Math. Inst. of RAS, 2026