RUS  ENG
Full version
PEOPLE

Ostapenko Vladimir Viktorovich

Publications in Math-Net.Ru

  1. On the accuracy of the discontinuous Galerkin method inside centered rarefaction waves and in the areas of their influence

    Mat. Model., 37:1 (2025),  113–130
  2. Finite-difference scheme of the fifth order by space with the increased accuracy in areas of shock waves' influence

    Zh. Vychisl. Mat. Mat. Fiz., 65:4 (2025),  558–573
  3. On the accuracy of calculating invariants in centered rarefaction waves and in their influence area

    Dokl. RAN. Math. Inf. Proc. Upr., 518 (2024),  65–74
  4. On increasing the accuracy of difference schemes when calculating centered rarefaction waves

    Mat. Model., 36:6 (2024),  119–134
  5. On convergence of numerical schemes when calculating Riemann problems for shallow water equations

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  171–202
  6. Numerical simulation of two-phase porous medium flow with an active additive

    Zh. Vychisl. Mat. Mat. Fiz., 64:10 (2024),  1994–2004
  7. On the integral convergence of numerical schemes calculating gas-dynamic shock waves

    Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023),  57–65
  8. On the accuracy of discontinuous Galerkin method calculating gas-dynamic shock waves

    Dokl. RAN. Math. Inf. Proc. Upr., 510 (2023),  43–51
  9. On accuracy of finite-difference schemes in calculations of centered rarefaction waves

    Mat. Model., 35:7 (2023),  83–96
  10. On the accuracy of shock-capturing schemes calculating gas-dynamic shock waves

    Zh. Vychisl. Mat. Mat. Fiz., 63:7 (2023),  1216–1224
  11. Erratum to: Several Articles in Doklady Mathematics

    Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022),  404–405
  12. On convergence of finite-difference shock-capturing schemes in regions of shock waves influence

    Dokl. RAN. Math. Inf. Proc. Upr., 504 (2022),  42–46
  13. Comparative analysis of the accuracy of three different schemes in the calculation of shock waves

    Mat. Model., 34:10 (2022),  43–64
  14. Combined numerical schemes

    Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022),  1763–1803
  15. Application of the CABARET scheme for calculating discontinuous solutions of a hyperbolic system of conservation laws

    Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021),  62–66
  16. To justification of the integral convergence method for studying the finite-difference schemes accuracy

    Mat. Model., 33:4 (2021),  45–59
  17. On increasing the stability of the combined scheme of the discontinuous Galerkin method

    Mat. Model., 33:3 (2021),  98–108
  18. On accuracy of MUSCL type scheme when calculating discontinuous solutions

    Mat. Model., 33:1 (2021),  105–121
  19. Search for an optimal solution of the problem of arteriovenous malformation embolization by the particle swarm method

    Prikl. Mekh. Tekh. Fiz., 62:4 (2021),  9–21
  20. Mathematical modeling of embolization of arteriovenous malformations with overflows on the basis of the two-phase filtering

    Zh. Vychisl. Mat. Mat. Fiz., 61:9 (2021),  1571–1584
  21. Accuracy of MUSCL-type schemes in shock wave calculations

    Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020),  43–48
  22. On monotonicity of CABARET scheme approximating the multidimensional scalar conservation law

    Sib. Zh. Vychisl. Mat., 23:4 (2020),  431–440
  23. Research on the accuracy of the discontinuous Galerkin method in the calculation of solutions with shock waves

    Keldysh Institute preprints, 2018, 195, 20 pp.
  24. On the monotonicity of the CABARET scheme approximating a scalar conservation law with alternating characteristic field

    Mat. Model., 30:5 (2018),  76–98
  25. On strong monotonicity of two-layer in time CABARET scheme

    Mat. Model., 30:5 (2018),  5–18
  26. Splitting method for CABARET scheme approximating the non-uniform scalar conservation law

    Sib. Zh. Vychisl. Mat., 21:2 (2018),  185–200
  27. Exact solutions with centered waves in the film flow model considering heat and mass transfer at the interface

    Sib. J. Pure and Appl. Math., 18:1 (2018),  64–72
  28. Monotonicity of the CABARET scheme approximating a hyperbolic system of conservation laws

    Zh. Vychisl. Mat. Mat. Fiz., 58:9 (2018),  1488–1504
  29. On the accuracy of the discontinuous Galerkin method in calculation of shock waves

    Zh. Vychisl. Mat. Mat. Fiz., 58:8 (2018),  148–156
  30. Decay of unstable strong discontinuities in the case of a convex-flux scalar conservation law approximated by the CABARET scheme

    Zh. Vychisl. Mat. Mat. Fiz., 58:6 (2018),  988–1012
  31. Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field

    Zh. Vychisl. Mat. Mat. Fiz., 56:5 (2016),  796–815
  32. Modification of the Cabaret scheme ensuring its high accuracy on local extrema

    Mat. Model., 27:10 (2015),  21–31
  33. Wave flows initiated by vertical lifting of a rectangular beam from shallow water

    Prikl. Mekh. Tekh. Fiz., 56:5 (2015),  102–110
  34. Numerical simulation of wave motions on a rotating attracting spherical zone

    Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015),  469–487
  35. Comparison of theory and experiment in simulation of dam break in a rectangular channel with a sudden change in cross-sectional area

    Prikl. Mekh. Tekh. Fiz., 55:6 (2014),  107–113
  36. Conservation laws of shallow water theory and the Galilean relativity principle

    Sib. Zh. Ind. Mat., 17:1 (2014),  99–113
  37. On the practical accuracy of shock-capturing schemes

    Mat. Model., 25:9 (2013),  63–74
  38. On monotony of two layer in time cabaret scheme

    Mat. Model., 24:9 (2012),  97–112
  39. Dam-break flows at a jump in the width of a rectangular channel

    Prikl. Mekh. Tekh. Fiz., 53:5 (2012),  55–66
  40. On compact approximations of divergent differential equations

    Sib. Zh. Vychisl. Mat., 15:3 (2012),  293–306
  41. On the strong monotonicity of the CABARET scheme

    Zh. Vychisl. Mat. Mat. Fiz., 52:3 (2012),  447–460
  42. Problem of the decay of a small-amplitude discontinuity in two-layer shallow water: First approximation

    Prikl. Mekh. Tekh. Fiz., 52:5 (2011),  27–38
  43. Numerical Simulation of Shallow Water Flows on the Rotating Attractive Sphere

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:3 (2010),  30–45
  44. On monotony of balance-characteristic scheme

    Mat. Model., 21:7 (2009),  29–42
  45. On a mechanical analogy in the ideal plasticity theory

    Prikl. Mekh. Tekh. Fiz., 49:4 (2008),  74–80
  46. Open-channel waves generated by propagation of a discontinuous wave over a bottom step

    Prikl. Mekh. Tekh. Fiz., 49:1 (2008),  31–44
  47. TVD scheme for computing open channel wave flows

    Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008),  2212–2224
  48. Modified shallow water equations which admit the propagation of discontinuous waves over a dry bed

    Prikl. Mekh. Tekh. Fiz., 48:6 (2007),  22–43
  49. Asymptotic expansion of a difference solution in the neighborhood of strong discontinuity

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:4 (2007),  49–73
  50. Flows resulting from the incidence of a discontinuous wave on a bottom step

    Prikl. Mekh. Tekh. Fiz., 47:2 (2006),  8–22
  51. Numerical simulation of discontinuous waves propagating over a dry bed

    Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006),  1322–1344
  52. Construction of asymptotics of a discrete solution based on nonclassical differential approximations

    Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005),  88–109
  53. Dam-break flows over a bottom drop

    Prikl. Mekh. Tekh. Fiz., 44:6 (2003),  107–122
  54. Dam-break flows over a bottom step

    Prikl. Mekh. Tekh. Fiz., 44:4 (2003),  51–63
  55. On accuracy of the shock wave computations by the shock-fitting method

    Zh. Vychisl. Mat. Mat. Fiz., 43:10 (2003),  1494–1516
  56. Discontinuous solutions of the “shallow water” equations for flow over a bottom step

    Prikl. Mekh. Tekh. Fiz., 43:6 (2002),  62–74
  57. Symmetric compact schemes with artificial viscosities of increased order of divergence

    Zh. Vychisl. Mat. Mat. Fiz., 42:7 (2002),  1019–1038
  58. On calculation of hydraulic bore in open channels

    Sib. Zh. Vychisl. Mat., 3:4 (2000),  305–321
  59. Construction of high-order accurate shock-capturing finite difference schemes for unsteady shock waves

    Zh. Vychisl. Mat. Mat. Fiz., 40:12 (2000),  1857–1874
  60. Complete systems of conservation laws for two-layer shallow water models

    Prikl. Mekh. Tekh. Fiz., 40:5 (1999),  23–32
  61. Numerical simulation of wave flows caused by a shoreside landslide

    Prikl. Mekh. Tekh. Fiz., 40:4 (1999),  109–117
  62. Finite difference scheme of high order of convergence at a nonstationary shock wave

    Sib. Zh. Vychisl. Mat., 2:1 (1999),  47–56
  63. Strong monotonicity of finite-difference schemes for systems of conservation laws

    Zh. Vychisl. Mat. Mat. Fiz., 39:10 (1999),  1687–1704
  64. Approximation of Hugoniot's conditions by explicit conservative difference schemes for non-stationar shock waves

    Sib. Zh. Vychisl. Mat., 1:1 (1998),  77–88
  65. On the strong monotonicity of three-point difference schemes

    Sibirsk. Mat. Zh., 39:6 (1998),  1357–1367
  66. On the monotonicity of difference schemes

    Sibirsk. Mat. Zh., 39:5 (1998),  1111–1126
  67. Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity

    Zh. Vychisl. Mat. Mat. Fiz., 38:8 (1998),  1355–1367
  68. On the strong monotonicity of nonlinear difference schemes

    Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998),  1170–1185
  69. Convergence of finite-difference schemes behind a shock front

    Zh. Vychisl. Mat. Mat. Fiz., 37:10 (1997),  1201–1212
  70. Weak finite difference approximation of a divergence differential operator of arbitrary order

    Zh. Vychisl. Mat. Mat. Fiz., 37:5 (1997),  637–640
  71. A method of increasing the order of the weak approximation of the laws of conservation on discontinuous solutions

    Zh. Vychisl. Mat. Mat. Fiz., 36:10 (1996),  146–157
  72. Canonical representations of standard difference approximations of differential operators

    Zh. Vychisl. Mat. Mat. Fiz., 35:8 (1995),  1175–1183
  73. Difference schemes of the balance method on a non-uniform mesh

    Zh. Vychisl. Mat. Mat. Fiz., 35:6 (1995),  893–904
  74. A method for reconstructing a difference operator in divergence form from its differential-difference analogues in divergence form

    Dokl. Akad. Nauk, 332:3 (1993),  291–293
  75. Asymptotic decomposition of numerical solution of the front of shock wave

    Mat. Model., 5:2 (1993),  94–103
  76. Approximation of the conservation laws on a non-uniform difference mesh

    Zh. Vychisl. Mat. Mat. Fiz., 33:11 (1993),  1663–1680
  77. Start-to-finish calculation of continuous waves in open channels

    Zh. Vychisl. Mat. Mat. Fiz., 33:5 (1993),  743–752
  78. Expansion of the difference solution on the front of a traveling shock wave

    Zh. Vychisl. Mat. Mat. Fiz., 32:2 (1992),  296–310
  79. Expansion of the difference solution of the front of a shock wave

    Dokl. Akad. Nauk SSSR, 320:2 (1991),  275–279
  80. Approximation of conservation laws by difference schemes of double sweep calculation

    Dokl. Akad. Nauk SSSR, 313:6 (1990),  1348–1352
  81. On a local fulfilment of conservation laws at the “smoothed” shock wave front

    Mat. Model., 2:7 (1990),  129–138
  82. Approximation of conservation laws by high-resolution difference schemes

    Zh. Vychisl. Mat. Mat. Fiz., 30:9 (1990),  1405–1417
  83. Divergence of difference operators that are defined on an inhomogeneous difference grid

    Dokl. Akad. Nauk SSSR, 304:6 (1989),  1295–1298
  84. Equivalent definitions of conservative finite-difference schemes

    Zh. Vychisl. Mat. Mat. Fiz., 29:8 (1989),  1114–1128
  85. A method for theoretical estimation of disbalances of nonconservative difference schemes on a shock wave

    Dokl. Akad. Nauk SSSR, 295:2 (1987),  292–297
  86. The convergence on a shock wave of continuous calculation difference schemes which are invariant with respect to similarity transformations

    Zh. Vychisl. Mat. Mat. Fiz., 26:11 (1986),  1661–1678
  87. Conservatism of finite-difference schemes

    Dokl. Akad. Nauk SSSR, 284:1 (1985),  47–50


© Steklov Math. Inst. of RAS, 2026