RUS  ENG
Full version
PEOPLE

Timoshenko Egor Aleksandrovich

Publications in Math-Net.Ru

  1. Rings of generalized matrices representing endomorphisms of a finite primary group

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 94,  57–66
  2. $E$-rings and quotient divisible abelian groups

    Sibirsk. Mat. Zh., 64:6 (2023),  1172–1185
  3. Involutions of the automorphism group of a completely decomposable finite-rank Abelian group

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 86,  167–175
  4. About $k$-nil-good formal matrix rings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 77,  17–26
  5. Determinability of a completely decomposable rank 3 group by its automorphism group

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 76,  32–42
  6. Quotient Divisible Groups of Rank 2

    Mat. Zametki, 110:1 (2021),  37–51
  7. Matrix representation of endomorphisms of primary groups of small ranks

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 74,  30–42
  8. On determinability of a completely decomposable rank $2$ group by its automorphism group

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68,  23–32
  9. On a class of 3-good formal matrix rings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 67,  55–62
  10. Tensor product of modules over csp-rings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 66,  56–63
  11. On determinability of a quotient divisible Abelian group of rank 1 by its automorphism group

    J. Sib. Fed. Univ. Math. Phys., 12:6 (2019),  699–704
  12. Involutions of the general linear group $GL_2$ over a subring of the field $\mathbb{Q}$

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 62,  19–26
  13. On the standard form for matrices of order two

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 59,  5–10
  14. Sequences of Endomorphism Groups of Abelian Groups

    Mat. Zametki, 104:2 (2018),  309–317
  15. The grothendieck group $K_0$ of an arbitrary csp-ring

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 55,  38–44
  16. Base fields of $\mathrm{csp}$-rings. II

    Fundam. Prikl. Mat., 20:5 (2015),  149–156
  17. Purely transcendental extensions of the field of rational numbers as base fields of csp-rings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 5(25),  30–39
  18. Projective modules over csp-rings

    J. Sib. Fed. Univ. Math. Phys., 5:4 (2012),  581–585
  19. Projective modules over the ring of pseudorational numbers

    J. Sib. Fed. Univ. Math. Phys., 4:4 (2011),  541–550
  20. On radicals in the category of modules over a csp-ring

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 3(15),  59–65
  21. Base fields of $\mathrm{csp}$-rings

    Algebra Logika, 49:4 (2010),  555–565
  22. On br-rings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 4(12),  32–38
  23. Radicals that are generated or cogenerated by bimodules

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 3(11),  47–52
  24. On generatedness of $T$-radicals by bimodules

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 2(10),  16–19
  25. T-radicals generated by bimodules

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2009, no. 8(74),  88–93
  26. T-radicals in the category of Abelian groups

    Fundam. Prikl. Mat., 13:3 (2007),  193–208
  27. $T$-radicals and $E$-radicals in the category of modules

    Sibirsk. Mat. Zh., 45:1 (2004),  201–210

  28. Andrey Rostislavovich Chekhlov (to the 65th anniversary of his birth)

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 88,  179–185
  29. Askar Akanovich Tuganbaev (to the 70th anniversary of his birth)

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 87,  175–179
  30. Pyotr Andreevich Krylov. To the 75th birthday

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 84,  167–173


© Steklov Math. Inst. of RAS, 2026