|
|
Publications in Math-Net.Ru
-
Rings of generalized matrices representing endomorphisms of a finite primary group
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 94, 57–66
-
$E$-rings and quotient divisible abelian groups
Sibirsk. Mat. Zh., 64:6 (2023), 1172–1185
-
Involutions of the automorphism group of a completely decomposable finite-rank Abelian group
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 86, 167–175
-
About $k$-nil-good formal matrix rings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 77, 17–26
-
Determinability of a completely decomposable rank 3 group by its automorphism group
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 76, 32–42
-
Quotient Divisible Groups of Rank 2
Mat. Zametki, 110:1 (2021), 37–51
-
Matrix representation of endomorphisms of primary groups of small ranks
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 74, 30–42
-
On determinability of a completely decomposable rank $2$ group by its automorphism group
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68, 23–32
-
On a class of 3-good formal matrix rings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 67, 55–62
-
Tensor product of modules over csp-rings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 66, 56–63
-
On determinability of a quotient divisible Abelian group of rank 1 by its automorphism group
J. Sib. Fed. Univ. Math. Phys., 12:6 (2019), 699–704
-
Involutions of the general linear group $GL_2$ over a subring of the field $\mathbb{Q}$
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 62, 19–26
-
On the standard form for matrices of order two
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 59, 5–10
-
Sequences of Endomorphism Groups of Abelian Groups
Mat. Zametki, 104:2 (2018), 309–317
-
The grothendieck group $K_0$ of an arbitrary csp-ring
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 55, 38–44
-
Base fields of $\mathrm{csp}$-rings. II
Fundam. Prikl. Mat., 20:5 (2015), 149–156
-
Purely transcendental extensions of the field of rational numbers as base fields of csp-rings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 5(25), 30–39
-
Projective modules over csp-rings
J. Sib. Fed. Univ. Math. Phys., 5:4 (2012), 581–585
-
Projective modules over the ring of pseudorational numbers
J. Sib. Fed. Univ. Math. Phys., 4:4 (2011), 541–550
-
On radicals in the category of modules over a csp-ring
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 3(15), 59–65
-
Base fields of $\mathrm{csp}$-rings
Algebra Logika, 49:4 (2010), 555–565
-
On br-rings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 4(12), 32–38
-
Radicals that are generated or cogenerated by bimodules
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 3(11), 47–52
-
On generatedness of $T$-radicals by bimodules
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 2(10), 16–19
-
T-radicals generated by bimodules
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2009, no. 8(74), 88–93
-
T-radicals in the category of Abelian groups
Fundam. Prikl. Mat., 13:3 (2007), 193–208
-
$T$-radicals and $E$-radicals in the category of modules
Sibirsk. Mat. Zh., 45:1 (2004), 201–210
-
Andrey Rostislavovich Chekhlov (to the 65th anniversary of his birth)
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 88, 179–185
-
Askar Akanovich Tuganbaev (to the 70th anniversary of his birth)
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 87, 175–179
-
Pyotr Andreevich Krylov. To the 75th birthday
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 84, 167–173
© , 2026