RUS  ENG
Full version
PEOPLE

Bogan Yurij Aleksandrovich

Publications in Math-Net.Ru

  1. The Dirichlet Problem for an Elliptic System of Second-Order Equations with Constant Real Coefficients in the Plane

    Mat. Zametki, 104:5 (2018),  659–666
  2. On the Samarskii–Andreev Conjugation Conditions in the Theory of Elastic Beams

    Mat. Zametki, 92:5 (2012),  662–669
  3. Antiplane strain of a cylindrically anisotropic elastic bar

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(26) (2012),  116–122
  4. On the anisotropy of multilayer nanotubes and high modulus fibers

    Sib. Zh. Ind. Mat., 14:1 (2011),  40–45
  5. The Dirichlet Problem in the 2D Stationary Anisotropic Thermoelasticity

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010),  64–71
  6. A Periodic Stress Problem for an Elastic Anisotropic Half-Plane

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(20) (2010),  46–52
  7. Second-order Fredholm equations for the first boundary-value problem in the two-dimensional anisotropic theory of elasticity

    Prikl. Mekh. Tekh. Fiz., 47:2 (2006),  85–94
  8. Regular integral equations for the second boundary-value problem of the bending of an anisotropic elastic plate

    Prikl. Mekh. Tekh. Fiz., 46:3 (2005),  108–119
  9. Averaging of a layered elastic medium with low dynamic dissipation at the interlayer boundary

    Prikl. Mekh. Tekh. Fiz., 45:4 (2004),  140–146
  10. On Fredholm integral equations in two-dimensional anisotropic theory of elasticity

    Sib. Zh. Vychisl. Mat., 4:1 (2001),  21–30
  11. On the potential method for a fourth-order elliptic equation in anisotropic elasticity theory

    Sib. Zh. Ind. Mat., 3:2 (2000),  29–34
  12. Singular perturbation in bending problems for orthotropic plates

    Prikl. Mekh. Tekh. Fiz., 40:5 (1999),  195–201
  13. Planar elastic problem for an orthotropic plane with a slit under edge contact conditions of the type of viscous friction

    Prikl. Mekh. Tekh. Fiz., 40:4 (1999),  195–197
  14. Averaging of an orthotropic elastic plate weakened by periodic hinges of finite stiffness

    Prikl. Mekh. Tekh. Fiz., 40:3 (1999),  168–174
  15. Stationary problems of the theory of elasticity with a small viscosity

    Sib. Zh. Vychisl. Mat., 2:1 (1999),  13–20
  16. Homogenization of a nonhomogeneous elastic beam with elements joined by a hinge of finite stiffness

    Sib. Zh. Ind. Mat., 1:2 (1998),  67–72
  17. Variational problems with a small parameter in the theory of elasticity

    Prikl. Mekh. Tekh. Fiz., 35:6 (1994),  151–156
  18. Antiplane deformation of a plane with a slit filled with a material with a low shear modulus

    Prikl. Mekh. Tekh. Fiz., 35:5 (1994),  125–128
  19. Distribution of stresses in elastic strongly anisotropic material

    Prikl. Mekh. Tekh. Fiz., 35:3 (1994),  168–173
  20. A class of singularly perturbed boundary value problems in a two-dimensional elasticity theory

    Prikl. Mekh. Tekh. Fiz., 28:2 (1987),  138–143
  21. Bending of a sector of a strongly anisotropic elastic ring

    Prikl. Mekh. Tekh. Fiz., 25:3 (1984),  150–153
  22. Asymptotic behavior of boundary-value problems for an elastic ring reinforced with very rigid fibers

    Prikl. Mekh. Tekh. Fiz., 21:6 (1980),  118–122
  23. St. Venant principle for strongly anisotropic elastic media

    Prikl. Mekh. Tekh. Fiz., 21:2 (1980),  164–169


© Steklov Math. Inst. of RAS, 2026