RUS  ENG
Full version
PEOPLE

Slavskii Viktor Vladimirovich

Publications in Math-Net.Ru

  1. Stochastic modelling of closed curves in the plane

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:1 (2021),  39–49
  2. Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 188 (2020),  70–75
  3. Analysis of three-channel images based on the theory of three-webs

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182 (2020),  119–124
  4. Generalized Legendre transform of conformally flat metrics

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182 (2020),  55–65
  5. Reconstruction of a triangle on a plane by three projections

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 181 (2020),  59–65
  6. Integral topographic characteristics in solving problems of remote sensing data processing

    Mathematical notes of NEFU, 27:1 (2020),  41–52
  7. Polar transform of conformally flat metrics

    Mat. Tr., 20:2 (2017),  120–138
  8. Numerical methods of interpolation for the solution of some problems of the convex geometry in Lobachevsky's space

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013),  76–90
  9. About invariant tensor fields on low dimensional Lie groups

    Vladikavkaz. Mat. Zh., 14:2 (2012),  3–30
  10. On harmonic tensors on three-dimensional Lie groups with left-invariant Lorentz metric

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:1 (2012),  29–73
  11. Harmonicity of the Weyl tensor of left-invariant Riemannian metrics on four-dimensional unimodular Lie groups

    Mat. Tr., 14:1 (2011),  50–69
  12. On half conformally flat 4-dimensional Lie groups

    Vladikavkaz. Mat. Zh., 13:3 (2011),  3–16
  13. In Regular Intervals Fuzzy Model of Linear Regression

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:2 (2010),  118–134
  14. Locally Conformally Homogeneous Pseudo-Riemannian Spaces

    Mat. Tr., 9:1 (2006),  130–168
  15. An estimate for the quasiconformality coefficient of a domain in terms of the curvature of its quasihyperbolic metric

    Sibirsk. Mat. Zh., 40:4 (1999),  947–965
  16. Local stability of two-dimensional manifolds of constant curvature in the class of manifolds of bounded curvature

    Sibirsk. Mat. Zh., 38:4 (1997),  892–896
  17. Conformal development of a curve in a Riemannian space into a Minkowski space

    Sibirsk. Mat. Zh., 37:3 (1996),  676–699
  18. Conformally-flat metrics and pseudo-Euclidean geometry

    Sibirsk. Mat. Zh., 35:3 (1994),  674–682
  19. Conformally flat metrics of nonnegative curvature

    Sibirsk. Mat. Zh., 30:5 (1989),  187–201
  20. Conformally flat metrics of bounded curvature on an $n$-dimensional sphere

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 9 (1987),  183–199
  21. Stability of a Euclidean structure with small integral curvature

    Sibirsk. Mat. Zh., 27:5 (1986),  166–172
  22. Integral-geometric relations with orthogonal projection for surfaces

    Sibirsk. Mat. Zh., 16:2 (1975),  355–367
  23. Integral geometry relations with orthogonal projection for hypersurfaces

    Sibirsk. Mat. Zh., 16:1 (1975),  103–123
  24. Integral-geometric relations with orthogonal projection for multidimensional surfaces

    Dokl. Akad. Nauk SSSR, 214:1 (1974),  48–51
  25. A certain integral geometry relation in surface theory

    Sibirsk. Mat. Zh., 13:3 (1972),  645–658

  26. Sergey Grigorievich Pyatkov (on 65th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:1 (2021),  131–133


© Steklov Math. Inst. of RAS, 2026