|
|
Publications in Math-Net.Ru
-
Modeling the variability of seismic properties of frozen multiphase media depending on temperature
Sib. Èlektron. Mat. Izv., 21:2 (2024), 203–231
-
Modeling of temperature-dependent wave fields in deformable porous media saturated with fluid
Sib. Zh. Vychisl. Mat., 27:4 (2024), 425–441
-
Dynamics of deformation of an elastic medium with initial stresses
Prikl. Mekh. Tekh. Fiz., 58:5 (2017), 178–189
-
Numerical modeling of gas-liquid compressible pipe flow based on thermodynamically compatible systems theory
Sib. J. Pure and Appl. Math., 16:1 (2016), 40–56
-
The Runge–Kutta/WENO method for solving equations for small-amplitude wave propagation in a saturated porous medium
Sib. Zh. Vychisl. Mat., 17:3 (2014), 259–271
-
A thermodynamically consistent system of conservation laws for the flow of a compressible fluid in an elastic porous medium
Sib. Zh. Ind. Mat., 14:4 (2011), 86–97
-
On modelling the frequency transformation effect in elastic waves
Sib. Zh. Ind. Mat., 13:3 (2010), 117–125
-
WENO/RK method for modelling elastic waves
Ufimsk. Mat. Zh., 2:1 (2010), 59–70
-
Deformation model for brittle materials and the structure of failure waves
Prikl. Mekh. Tekh. Fiz., 48:3 (2007), 164–172
-
Systems of thermodynamically coordinated laws of conservation invariant under rotations
Sibirsk. Mat. Zh., 37:4 (1996), 790–806
-
Symmetric form of the equations of a nonlinear Maxwell medium
Trudy Inst. Mat. SO RAN, 26 (1994), 91–106
-
Modelling of shock wave processes in unidirectional composites
Fizika Goreniya i Vzryva, 29:5 (1993), 72–76
-
Model of dynamic deformation of a laminated thermoviscoelastic composite
Fizika Goreniya i Vzryva, 29:4 (1993), 123–131
-
Wave processes in saturated porous elastically deformed media
Fizika Goreniya i Vzryva, 29:1 (1993), 99–110
-
Model of dynamic deformation of unidirectional composites
Dokl. Akad. Nauk, 327:1 (1992), 48–54
-
Dynamic strain model for a fibrous thermoviscoelastic composite
Fizika Goreniya i Vzryva, 28:4 (1992), 120–126
-
A model for a viscoelastic composite with microstresses
Trudy Inst. Mat. SO RAN, 22 (1992), 151–167
-
A numerical method for the two-dimensional dynamical equations of the nonlinear elastoplastic Maxwell medium
Trudy Inst. Mat. Sib. Otd. AN SSSR, 18 (1990), 83–100
-
Construction of difference grids in complex domains by means of quasiconformal mappings
Trudy Inst. Mat. Sib. Otd. AN SSSR, 18 (1990), 75–83
-
Hyperbolic equations of Maxwell’s nonlinear model of elastoplastic heat-conducting media
Sibirsk. Mat. Zh., 30:4 (1989), 135–159
-
Godunov's difference scheme for one-dimensional relaxation equations of thermoelastoplasticity
Trudy Inst. Mat. Sib. Otd. AN SSSR, 11 (1988), 101–115
-
Relaxation model for describing the strain of porous materials
Prikl. Mekh. Tekh. Fiz., 29:5 (1988), 145–149
-
Hyperbolic equations of heat conduction. Global solvability of the Cauchy problem
Sibirsk. Mat. Zh., 27:5 (1986), 128–134
-
A dynamic model of a thermoelastic continuous medium with pressure relaxation
Prikl. Mekh. Tekh. Fiz., 25:2 (1984), 132–138
-
Dynamics of impulsive metal heating by a current and electrical explosion of conductors
Prikl. Mekh. Tekh. Fiz., 24:4 (1983), 10–25
-
Propagation of small perturbations and the slip line in a plastic medium
Prikl. Mekh. Tekh. Fiz., 20:6 (1979), 158–163
-
Dynamic three-dimensional equations of the Rakhmatulin elastic-plastic model
Prikl. Mekh. Tekh. Fiz., 20:2 (1979), 138–158
-
Perturbation of the front of a flat plastic wave
Prikl. Mekh. Tekh. Fiz., 18:4 (1977), 133–140
-
Characteristic cones of the equations in the nonlinear theory of elasticity
Prikl. Mekh. Tekh. Fiz., 15:3 (1974), 126–132
-
Hypoelastic form of equations in nonlinear elasticity theory
Prikl. Mekh. Tekh. Fiz., 15:2 (1974), 133–138
-
Equations of state of the elastic energy of metals in the case of a nonspherical strain tensor
Prikl. Mekh. Tekh. Fiz., 15:2 (1974), 123–128
-
Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates
Prikl. Mekh. Tekh. Fiz., 13:6 (1972), 124–144
-
Sergei Konstantinovich Godunov has turned 85 years old
Uspekhi Mat. Nauk, 70:3(423) (2015), 183–207
© , 2026