RUS  ENG
Full version
PEOPLE

Romenskii Evgenii Igorevich

Publications in Math-Net.Ru

  1. Modeling the variability of seismic properties of frozen multiphase media depending on temperature

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  203–231
  2. Modeling of temperature-dependent wave fields in deformable porous media saturated with fluid

    Sib. Zh. Vychisl. Mat., 27:4 (2024),  425–441
  3. Dynamics of deformation of an elastic medium with initial stresses

    Prikl. Mekh. Tekh. Fiz., 58:5 (2017),  178–189
  4. Numerical modeling of gas-liquid compressible pipe flow based on thermodynamically compatible systems theory

    Sib. J. Pure and Appl. Math., 16:1 (2016),  40–56
  5. The Runge–Kutta/WENO method for solving equations for small-amplitude wave propagation in a saturated porous medium

    Sib. Zh. Vychisl. Mat., 17:3 (2014),  259–271
  6. A thermodynamically consistent system of conservation laws for the flow of a compressible fluid in an elastic porous medium

    Sib. Zh. Ind. Mat., 14:4 (2011),  86–97
  7. On modelling the frequency transformation effect in elastic waves

    Sib. Zh. Ind. Mat., 13:3 (2010),  117–125
  8. WENO/RK method for modelling elastic waves

    Ufimsk. Mat. Zh., 2:1 (2010),  59–70
  9. Deformation model for brittle materials and the structure of failure waves

    Prikl. Mekh. Tekh. Fiz., 48:3 (2007),  164–172
  10. Systems of thermodynamically coordinated laws of conservation invariant under rotations

    Sibirsk. Mat. Zh., 37:4 (1996),  790–806
  11. Symmetric form of the equations of a nonlinear Maxwell medium

    Trudy Inst. Mat. SO RAN, 26 (1994),  91–106
  12. Modelling of shock wave processes in unidirectional composites

    Fizika Goreniya i Vzryva, 29:5 (1993),  72–76
  13. Model of dynamic deformation of a laminated thermoviscoelastic composite

    Fizika Goreniya i Vzryva, 29:4 (1993),  123–131
  14. Wave processes in saturated porous elastically deformed media

    Fizika Goreniya i Vzryva, 29:1 (1993),  99–110
  15. Model of dynamic deformation of unidirectional composites

    Dokl. Akad. Nauk, 327:1 (1992),  48–54
  16. Dynamic strain model for a fibrous thermoviscoelastic composite

    Fizika Goreniya i Vzryva, 28:4 (1992),  120–126
  17. A model for a viscoelastic composite with microstresses

    Trudy Inst. Mat. SO RAN, 22 (1992),  151–167
  18. A numerical method for the two-dimensional dynamical equations of the nonlinear elastoplastic Maxwell medium

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 18 (1990),  83–100
  19. Construction of difference grids in complex domains by means of quasiconformal mappings

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 18 (1990),  75–83
  20. Hyperbolic equations of Maxwell’s nonlinear model of elastoplastic heat-conducting media

    Sibirsk. Mat. Zh., 30:4 (1989),  135–159
  21. Godunov's difference scheme for one-dimensional relaxation equations of thermoelastoplasticity

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 11 (1988),  101–115
  22. Relaxation model for describing the strain of porous materials

    Prikl. Mekh. Tekh. Fiz., 29:5 (1988),  145–149
  23. Hyperbolic equations of heat conduction. Global solvability of the Cauchy problem

    Sibirsk. Mat. Zh., 27:5 (1986),  128–134
  24. A dynamic model of a thermoelastic continuous medium with pressure relaxation

    Prikl. Mekh. Tekh. Fiz., 25:2 (1984),  132–138
  25. Dynamics of impulsive metal heating by a current and electrical explosion of conductors

    Prikl. Mekh. Tekh. Fiz., 24:4 (1983),  10–25
  26. Propagation of small perturbations and the slip line in a plastic medium

    Prikl. Mekh. Tekh. Fiz., 20:6 (1979),  158–163
  27. Dynamic three-dimensional equations of the Rakhmatulin elastic-plastic model

    Prikl. Mekh. Tekh. Fiz., 20:2 (1979),  138–158
  28. Perturbation of the front of a flat plastic wave

    Prikl. Mekh. Tekh. Fiz., 18:4 (1977),  133–140
  29. Characteristic cones of the equations in the nonlinear theory of elasticity

    Prikl. Mekh. Tekh. Fiz., 15:3 (1974),  126–132
  30. Hypoelastic form of equations in nonlinear elasticity theory

    Prikl. Mekh. Tekh. Fiz., 15:2 (1974),  133–138
  31. Equations of state of the elastic energy of metals in the case of a nonspherical strain tensor

    Prikl. Mekh. Tekh. Fiz., 15:2 (1974),  123–128
  32. Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates

    Prikl. Mekh. Tekh. Fiz., 13:6 (1972),  124–144

  33. Sergei Konstantinovich Godunov has turned 85 years old

    Uspekhi Mat. Nauk, 70:3(423) (2015),  183–207


© Steklov Math. Inst. of RAS, 2026