RUS  ENG
Full version
PEOPLE

Tersenov Aris Savvich

Publications in Math-Net.Ru

  1. On radially symmetric solutions of the Neumann boundary value problem for the $p$-Laplace equation

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 167:1 (2025),  150–168
  2. On existence of viscosity solutions for evolution $p(x)$-Laplace equation with one spatial variable

    Sib. Zh. Ind. Mat., 27:4 (2024),  130–151
  3. On radially symmetric solutions of the third boundary value problem for a p-Laplace equation

    Mathematical notes of NEFU, 31:4 (2024),  64–81
  4. On the existence of radially symmetric solutions for the $p$-Laplace equation with strong gradient nonlinearities

    Sibirsk. Mat. Zh., 64:6 (2023),  1332–1345
  5. On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents

    Sib. Zh. Ind. Mat., 25:4 (2022),  206–220
  6. On the solvability of the Dirichlet problem for anisotropic parabolic equations in non-convex domains

    Sib. Zh. Ind. Mat., 25:1 (2022),  131–146
  7. On quasilinear anisotropic parabolic equations with time-dependent exponents

    Sibirsk. Mat. Zh., 61:1 (2020),  201–223
  8. Radially symmetric solutions of the $p$-Laplace equation with gradient terms

    Sib. Zh. Ind. Mat., 21:4 (2018),  121–136
  9. On the existence of nonnegative solutions to the Dirichlet boundary value problem for the $p$-Laplace equation in presence of external mass forces

    Sib. Zh. Ind. Mat., 19:1 (2016),  82–93
  10. Existence of radially symmetric solutions of the inhomogeneous $p$-Laplace equation

    Sibirsk. Mat. Zh., 57:5 (2016),  1171–1183
  11. On the influence of gradient terms on the existence of solutions to Dirichlet problem for the $p$-Laplace equation

    Sib. J. Pure and Appl. Math., 16:1 (2016),  130–142
  12. New a priori estimates of solutions to anisotropic elliptic equations

    Sibirsk. Mat. Zh., 53:3 (2012),  672–686
  13. On the solvability of some boundary value problems for a class of quasilinear parabolic equations

    Sibirsk. Mat. Zh., 40:5 (1999),  1147–1156
  14. Solvability of the Lyapunov equation for second-order nonselfadjoint differential operators with nonlocal boundary conditions

    Sibirsk. Mat. Zh., 39:5 (1998),  1184–1201
  15. On a certain class of nonuniformly elliptic equations

    Sibirsk. Mat. Zh., 36:4 (1995),  893–902
  16. A priori estimates for the solutions of a class of degenerate parabolic and ultraparabolic equations

    Dokl. Akad. Nauk, 338:2 (1994),  168–170

  17. To the 100th anniversary of the birth of Savva Avraamovich Tersenov

    Vladikavkaz. Mat. Zh., 26:4 (2024),  145–146


© Steklov Math. Inst. of RAS, 2026