RUS  ENG
Full version
PEOPLE

Grebenev Vladimir Nikolaevich

Publications in Math-Net.Ru

  1. Local equilibrium approach in the problem of the dynamics of a plane turbulent wake in a passively stratified medium

    Sib. Zh. Ind. Mat., 27:1 (2024),  16–28
  2. Symmetry transformations of the vortex field statistics in optical turbulence

    TMF, 217:2 (2023),  438–451
  3. Local equilibrium approximation in the mathematical model of the far turbulent wake behind a body of revolution

    Prikl. Mekh. Tekh. Fiz., 63:5 (2022),  110–118
  4. Hydrodynamic approximation for two-dimensional optical turbulence: symmetries of statistical distributions

    Kvantovaya Elektronika, 52:11 (2022),  1023–1030
  5. Method of differential constraints: local equilibrium approximation in a momentumless flat turbulent wake

    Prikl. Mekh. Tekh. Fiz., 62:3 (2021),  38–47
  6. On a Preserving Loitsyansky Invariant into Millionshtchikov Closure Model of Homogeneous Isotropic Turbulent Dynamics

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:4 (2009),  23–37
  7. Hidden symmetries to a Hanjalic–Launder semiempirical model of turbulence

    Regul. Chaotic Dyn., 11:3 (2006),  371–381
  8. On a class of self-similar solutions of the problem of shear-free mixing layer of turbulent flows

    Sib. Zh. Ind. Mat., 2:2 (1999),  51–59
  9. On a problem of the dynamics of a far plane turbulent wake

    Sib. Zh. Ind. Mat., 1:1 (1998),  97–103
  10. Heat propagation in a planar zero-momentum turbulent wake

    Zh. Vychisl. Mat. Mat. Fiz., 37:7 (1997),  878–886
  11. On a certain system of degenerate parabolic equations which arises in hydrodynamics

    Sibirsk. Mat. Zh., 35:4 (1994),  753–767
  12. Diffusion of a turbulent spot in a problem with singularly perturbed initial turbulence energy

    Zh. Vychisl. Mat. Mat. Fiz., 32:12 (1992),  1916–1928
  13. The dynamic system that arises in the problem of the evaporation of a turbulent layer in a homogeneous fluid

    Zh. Vychisl. Mat. Mat. Fiz., 32:1 (1992),  123–135
  14. Solvability of a problem on the evolution of a turbulent spot in a homogeneous fluid on a small time interval

    Differ. Uravn., 27:10 (1991),  1725–1733
  15. On a coordinate transformation in a problem with a free boundary

    Sibirsk. Mat. Zh., 32:3 (1991),  39–46
  16. On the solvability of the problem of the development of a domain of turbulent homogeneous fluid

    Zh. Vychisl. Mat. Mat. Fiz., 30:4 (1990),  616–619

  17. Letter to the editors: “Solvability of a problem on the evolution of a turbulent spot in a homogeneous fluid on a small time interval” [Differentsial'nye Uravneniya 27 (1991), no. 10, 1725–1733, 1836; MR1157679]

    Differ. Uravn., 28:10 (1992),  1836


© Steklov Math. Inst. of RAS, 2026