RUS  ENG
Full version
PEOPLE

Lytkina Daria Viktorovna

Publications in Math-Net.Ru

  1. On periodic groups with a narrow conjugacy class of involutions

    Sibirsk. Mat. Zh., 66:5 (2025),  924–928
  2. Structure of finite groups isospectral to the automorphism group of the second sporadic Janko group

    Sibirsk. Mat. Zh., 66:1 (2025),  27–29
  3. On finite groups subspectral to finite almost simple groups

    Vladikavkaz. Mat. Zh., 27:3 (2025),  68–74
  4. Periodic groups saturated with finite simple symplectic groups

    Algebra Logika, 63:2 (2024),  143–153
  5. Periodic groups saturated with finite simple unitary groups of degree 4 over finite fields of odd characteristic

    Sibirsk. Mat. Zh., 65:5 (2024),  985–990
  6. The Alperin theorem for periodic groups with a finite Sylow $2$-subgroup

    Sibirsk. Mat. Zh., 65:4 (2024),  686–692
  7. Unsolvability of finite groups isospectral to the automorphism group of the second sporadic Janko group

    Algebra Logika, 62:1 (2023),  71–75
  8. Periodic Frobenius groups

    Sibirsk. Mat. Zh., 64:6 (2023),  1224–1228
  9. On extension of a regular automorphism

    Sibirsk. Mat. Zh., 64:4 (2023),  770–772
  10. Periodic Groups with One Finite Nontrivial Sylow 2-Subgroup

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  146–154
  11. Finite groups whose maximal subgroups have only soluble proper subgroups

    Sib. Èlektron. Mat. Izv., 19:1 (2022),  237–240
  12. Periodic groups saturated with finite simple symplectic groups of dimension 6 over fields of odd characteristics

    Sibirsk. Mat. Zh., 63:6 (2022),  1308–1312
  13. Periodic groups saturated with finite simple groups $L_4(q)$

    Algebra Logika, 60:6 (2021),  549–556
  14. Infinite groups containing a proper Hughes subgroup $H_3(G)$

    Algebra Logika, 60:3 (2021),  298–302
  15. Locally finite periodic groups saturated with finite simple orthogonal groups of odd dimension

    Sibirsk. Mat. Zh., 62:3 (2021),  572–578
  16. On characterization of simple orthogonal groups of odd dimension in the class of periodic groups

    Sibirsk. Mat. Zh., 62:1 (2021),  97–105
  17. Primary cosets in groups

    Algebra Logika, 59:3 (2020),  315–322
  18. Fusion of $2$-elements in periodic groups with finite Sylow $2$-subgroups

    Sib. Èlektron. Mat. Izv., 17 (2020),  1953–1958
  19. On the periodic groups saturated with finite simple groups of lie type $b_3$

    Sibirsk. Mat. Zh., 61:3 (2020),  634–640
  20. Integral Cayley graphs

    Algebra Logika, 58:4 (2019),  445–457
  21. Characterization of Locally Finite Simple Groups of Type $G_2$ over Fields of Odd Characteristics in the Class of Periodic Groups

    Mat. Zametki, 105:4 (2019),  519–525
  22. Finite groups close to Frobenius groups

    Sibirsk. Mat. Zh., 60:5 (2019),  1035–1040
  23. Characterization of simple symplectic groups of degree 4 over locally finite fields in the class of periodic groups

    Algebra Logika, 57:3 (2018),  306–320
  24. Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic

    Mat. Tr., 21:1 (2018),  55–72
  25. 2-rank two periodic groups saturated with finite simple groups

    Sib. Èlektron. Mat. Izv., 15 (2018),  786–796
  26. Characterization of locally finite simple groups of the type $^3D_4$ over fields of odd characteristic in the class of periodic groups

    Sibirsk. Mat. Zh., 59:5 (2018),  1013–1019
  27. On infinite Frobenius groups

    Vladikavkaz. Mat. Zh., 20:2 (2018),  80–85
  28. Characterizations of simple linear groups in the class of periodic groups

    J. Sib. Fed. Univ. Math. Phys., 10:3 (2017),  287–292
  29. Characterization of simple symplectic groups of degree $4$ over locally finite fields of characteristic $2$ in the class of periodic groups

    Sibirsk. Mat. Zh., 58:5 (2017),  1098–1109
  30. Periodic groups saturated with finite simple groups of types $U_3$ and $L_3$

    Algebra Logika, 55:4 (2016),  441–448
  31. Sylow $2$-subgroups of the periodic groups saturated with finite simple groups

    Sibirsk. Mat. Zh., 57:6 (2016),  1313–1319
  32. On $2$-groups with finite subgroups of rank $2$

    Sibirsk. Mat. Zh., 57:3 (2016),  675–682
  33. On groups of period 12

    Sibirsk. Mat. Zh., 56:3 (2015),  594–599
  34. Periodic groups saturated with finite simple groups

    Tr. Inst. Mat., 23:2 (2015),  72–75
  35. $\{2,3\}$-groups with no elements of order 6

    Algebra Logika, 53:6 (2014),  710–721
  36. Groups whose element orders do not exceed 6

    Algebra Logika, 53:5 (2014),  570–586
  37. Groups with given element orders

    J. Sib. Fed. Univ. Math. Phys., 7:2 (2014),  191–203
  38. On $\{2,3\}$-groups without elements of order 6

    Sibirsk. Mat. Zh., 55:6 (2014),  1345–1352
  39. Periodic groups saturated with direct products of Suzuki groups and elementary abelian $2$-groups

    Sibirsk. Mat. Zh., 54:5 (2013),  1009–1014
  40. On groups with given properties of the finite subgroups generated by couples of $2$-elements

    Sibirsk. Mat. Zh., 54:1 (2013),  127–130
  41. On groups of exponent 36

    Sibirsk. Mat. Zh., 54:1 (2013),  44–48
  42. On periodic groups acting freely on abelian groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  136–143
  43. Groups with given properties of finite subgroups

    Algebra Logika, 51:3 (2012),  321–330
  44. On local finiteness of some groups of period 12

    Sibirsk. Mat. Zh., 53:6 (2012),  1373–1378
  45. Partial generalization of one of Macdonald's results

    Sib. Èlektron. Mat. Izv., 8 (2011),  369–371
  46. On $2$-groups, all of whose finite subgroups are of nilpotency class $2$

    Sib. Èlektron. Mat. Izv., 8 (2011),  1–3
  47. On the periodic groups saturated by direct products of finite simple groups. II

    Sibirsk. Mat. Zh., 52:5 (2011),  1096–1112
  48. On the periodic groups saturated by direct products of finite simple groups

    Sibirsk. Mat. Zh., 52:2 (2011),  340–349
  49. 2-groups with given properties of finite subgroups

    Vladikavkaz. Mat. Zh., 13:4 (2011),  35–39
  50. Periodic groups acting freely on Abelian groups

    Algebra Logika, 49:3 (2010),  379–387
  51. Periodic groups generated by a pair of virtually quadratic automorphisms of an abelian group

    Sibirsk. Mat. Zh., 51:3 (2010),  599–603
  52. Groups saturated by finite simple groups

    Algebra Logika, 48:5 (2009),  628–653
  53. Groups containing a strongly embedded subgroup

    Algebra Logika, 48:2 (2009),  190–202
  54. Periodic groups saturated by finite simple groups $U_3(2^m)$

    Algebra Logika, 47:3 (2008),  288–306
  55. The periodic groups saturated by finitely many finite simple groups

    Sibirsk. Mat. Zh., 49:2 (2008),  394–399
  56. Periodic groups saturated with $L_3(2^m)$

    Algebra Logika, 46:5 (2007),  606–626
  57. Periodic groups saturated by the group $U_3(9)$

    Sib. Èlektron. Mat. Izv., 4 (2007),  300–303
  58. Recognizability by spectrum of the group $L_2(7)$

    Sib. Èlektron. Mat. Izv., 4 (2007),  136–140
  59. Structure of a group with elements of order at most 4

    Sibirsk. Mat. Zh., 48:2 (2007),  353–358
  60. Algebraically nonequivalent constructivization for infinite-dimensional vector space

    Algebra Logika, 29:6 (1990),  659–674


© Steklov Math. Inst. of RAS, 2026