RUS  ENG
Full version
PEOPLE

Nikonov Vladimir Glebovich

Publications in Math-Net.Ru

  1. Construction of a reversible full-cycle transformation in a threshold basis

    Comp. nanotechnol., 10:2 (2023),  36–41
  2. 4-variable boolean functions representations classification in the form of nonlinearity minimal degree separating surfaces

    Comp. nanotechnol., 9:1 (2022),  56–92
  3. About some properties of quasi-hadamard matrices defining bijective transformations

    Comp. nanotechnol., 9:1 (2022),  32–38
  4. On the complexity of specifying a symmetric group of permutations of degree 2$^{n}$ in a threshold basis on a promising element base

    Comp. nanotechnol., 8:3 (2021),  50–58
  5. Combinatorial polynomially computable characteristics of substitutions and their properties

    Comp. nanotechnol., 7:2 (2020),  34–41
  6. Specifications of approximation $k$-value functions and their properties

    Comp. nanotechnol., 6:2 (2019),  77–84
  7. Geometric approach to estimation of complexity boolean functions

    Comp. nanotechnol., 2018, no. 3,  32–43
  8. About possibility of using fractal models in data security system construction

    Comp. nanotechnol., 2017, no. 1,  39–49
  9. About the new algoritm of characterization of $k$-valued threshold functions

    Comp. nanotechnol., 2017, no. 1,  7–14
  10. Threshold interpolations in solving nonlinear Boolean equation by method of separating planes

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  165–168
  11. The usage of equalprobable functions with mutal implicantive covering of straight diameter in the problem of constructing bijective mapping $\Phi:V^r_2 \to V^r_2$

    Comp. nanotechnol., 2016, no. 2,  132–138
  12. Bijective coordinate-forbidden k-valued functions in a problem of synthesis of substitutions

    Comp. nanotechnol., 2016, no. 1,  14–23
  13. About bijectivity of transformations determined by quasi-Hadamard matrixes

    Comp. nanotechnol., 2016, no. 1,  6–13
  14. Recognizing Parameters of the Information Security Unit Implemented by the Threshold K-Valued Function

    Tr. SPIIRAN, 46 (2016),  108–127
  15. Geometrical approach to the argumentum of bijection of one coordinate-threshold reflection

    Comp. nanotechnol., 2015, no. 4,  26–30
  16. About construction of analytical definition of k-value threshold function

    Comp. nanotechnol., 2015, no. 2,  5–13
  17. A class of functions with coordinate-dependent polynomiality over the ring $\mathbb Z_{2^m}$

    Mat. Vopr. Kriptogr., 4:3 (2013),  21–47
  18. On the number of significant variables of balanced Boolean function with the fixed number of elementary conjunctions in its DNF

    Mat. Vopr. Kriptogr., 2:4 (2011),  37–47
  19. On the structure of strictly convex $k$-functions

    Mat. Vopr. Kriptogr., 2:1 (2011),  75–95
  20. On the conplexity of joint realization of Boolean functions regular systems in the DNF basis

    Mat. Vopr. Kriptogr., 1:3 (2010),  45–65
  21. Features of threshold representations of $k$-valued functions

    Tr. Diskr. Mat., 11:1 (2008),  60–85
  22. On the existence of minimal but not shortest disjunctive normal form

    Tr. Diskr. Mat., 10 (2007),  188–201
  23. Coverings of Boolean graphs

    Diskr. Mat., 6:4 (1994),  21–34
  24. Boolean graphs and functions

    Diskr. Mat., 3:4 (1991),  52–61
  25. Application of nonlinear filtering methods to problems of estimating the phase coordinates of dynamic plants

    Avtomat. i Telemekh., 1979, no. 12,  71–79


© Steklov Math. Inst. of RAS, 2026