RUS  ENG
Full version
PEOPLE

Galiev Shamil' Ibragimovich

Publications in Math-Net.Ru

  1. Linear and nonlinear optimization models of multiple covering of a bounded plane domain with circles

    Computer Research and Modeling, 11:6 (2019),  1101–1110
  2. On the number and arrangement of sensors for the multiple covering of bounded plane domains

    Diskretn. Anal. Issled. Oper., 26:1 (2019),  33–54
  3. Optimization of the number and arrangement of circles of two radii for forming a $k$-covering of a bounded set

    Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019),  716–728
  4. Numerical optimization method for packing regular convex polygons

    Zh. Vychisl. Mat. Mat. Fiz., 56:8 (2016),  1416–1427
  5. Multiple circle coverings of an equilateral triangle, square, and circle

    Diskretn. Anal. Issled. Oper., 22:6 (2015),  5–28
  6. Numerical optimization methods for packing equal orthogonally oriented ellipses in a rectangular domain

    Zh. Vychisl. Mat. Mat. Fiz., 53:11 (2013),  1923–1938
  7. Optimization of a multiple covering of a bounded set with circles

    Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010),  757–769
  8. Finding approximate solutions to minimax problems

    Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997),  1439–1448
  9. Multiple packings and coverings of a sphere

    Diskr. Mat., 8:3 (1996),  148–160
  10. Computational algorithms for the optimum covering of plane domains by a prescribed number of ellipses

    Zh. Vychisl. Mat. Mat. Fiz., 35:5 (1995),  772–783
  11. The directions of decrease for minmaxmin problems

    Zh. Vychisl. Mat. Mat. Fiz., 34:3 (1994),  323–343
  12. Directions of decrease for minimax problems

    Zh. Vychisl. Mat. Mat. Fiz., 33:1 (1993),  22–34
  13. Numerical solutions of minmaxmin problems

    Zh. Vychisl. Mat. Mat. Fiz., 28:7 (1988),  1000–1011
  14. Obtaining an approximate solution of a maximin with connected variables and of a multiple maximin

    Zh. Vychisl. Mat. Mat. Fiz., 26:10 (1986),  1455–1467
  15. Determination of suboptimal solutions of minimax problems

    Zh. Vychisl. Mat. Mat. Fiz., 25:11 (1985),  1738
  16. A singular case of the Wiener–Hopf system of equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 3,  32–42

  17. Corrections: “Numerical solutions of minmaxmin problems”

    Zh. Vychisl. Mat. Mat. Fiz., 28:12 (1988),  1762


© Steklov Math. Inst. of RAS, 2026