RUS  ENG
Full version
PEOPLE

Kozlitin Oleg Alekseevich

Publications in Math-Net.Ru

  1. Stability of remote voting protocols to compromise of network subscribers: an information-theoretical approach

    Mat. Vopr. Kriptogr., 16:3 (2025),  41–59
  2. Remote voting protocols. II

    Mat. Vopr. Kriptogr., 15:3 (2024),  83–100
  3. Remote voting protocols. I

    Mat. Vopr. Kriptogr., 14:4 (2023),  89–110
  4. Periodical properties of multidimensional polynomial generator over Galois ring. IV

    Mat. Vopr. Kriptogr., 13:4 (2022),  69–95
  5. Periodical properties of multidimensional polynomial transformations of Galois – Eisenstein ring

    Mat. Vopr. Kriptogr., 13:1 (2022),  69–99
  6. Periodical properties of multidimensional polynomial generator over Galois ring. III

    Mat. Vopr. Kriptogr., 11:4 (2020),  49–76
  7. Periodical properties of multidimensional polynomial generator over Galois ring. II

    Mat. Vopr. Kriptogr., 11:1 (2020),  63–100
  8. Pseudorandom sequence generators based on shift registers over finite chain rings

    Mat. Vopr. Kriptogr., 10:3 (2019),  49–65
  9. Periodic properties of multidimensional polynomial generator over the Galois ring. I

    Mat. Vopr. Kriptogr., 9:3 (2018),  61–98
  10. Estimate of the maximal cycle length in the graph of polynomial transformation of Galois–Eisenstein ring

    Diskr. Mat., 29:4 (2017),  41–58
  11. On periodic properties of polylinear shift registers

    Diskr. Mat., 29:1 (2017),  27–50
  12. Probabilistic linear relations in binary recurring sequences

    Mat. Vopr. Kriptogr., 8:3 (2017),  57–84
  13. On the structure of graph of polynomial transformation of the Galois ring

    Mat. Vopr. Kriptogr., 6:3 (2015),  47–73
  14. Constructing pseudorandom sequences by means of $2$-linear shift register

    Mat. Vopr. Kriptogr., 5:1 (2014),  39–72
  15. Cyclic structure of a polynomial generator over the Galois ring

    Mat. Vopr. Kriptogr., 4:1 (2013),  27–57
  16. $2$-linear shift register over the Galois ring of even characteristic

    Mat. Vopr. Kriptogr., 3:2 (2012),  27–61
  17. Parallel decomposition of nonautonomous 2-linear shift registers

    Mat. Vopr. Kriptogr., 2:3 (2011),  5–29
  18. Properties of the output sequence of a simplest 2-linear shift register over $\mathbf Z_{2^n}$

    Diskr. Mat., 19:4 (2007),  70–96
  19. Periodic properties of a simplest 2-linear shift register

    Diskr. Mat., 19:3 (2007),  51–78
  20. Polynomial transformations of a GEO-ring of prime characteristic

    Diskr. Mat., 16:3 (2004),  105–117

  21. To the memory of Igor Aleksandrovich Kruglov

    Mat. Vopr. Kriptogr., 11:4 (2020),  5–6


© Steklov Math. Inst. of RAS, 2026